Last time $+\varepsilon$
ס-rings: $(A, \delta) \quad \varphi(a)=a^{p}+p \delta(a)$ lifts Fob
Witt vectors: $W(R) \xrightarrow[d=0]{p} R$ universal $\delta_{\text {-ring mapping to } R} R$
Teichmiller: $W(R)^{d=0} \subseteq W(R) \rightarrow R,[\quad]: R \longrightarrow W(R)$
Verschiebung: $V: W(R) \longrightarrow W(R)$ additive, injetive, image $=k_{V}(p r)$

$$
V\left(\varphi\left(w_{1}\right) w_{2}\right)=w, V\left(w_{2}\right), \varphi(V(w))=p w
$$

\Rightarrow Every $\omega \in W(R)$ has

$$
\begin{aligned}
w & =\left[r_{0}\right]+V\left[r_{1}\right]+V^{2}\left[r_{2}\right]+\ldots \\
& =\sum_{i=0}^{\infty} V^{i}\left[r_{i}\right]
\end{aligned}
$$

If R is aperfect \mathbb{F}_{p}-algebra

$$
\begin{gathered}
V=p \varphi^{-1}, W=\sum V^{i}\left[r_{i}\right]=\sum r_{i}^{\frac{1}{i}} p^{i} \\
* V^{n} W(R) \subseteq W(R) \text { ideal, } W_{n}(R)=W(R) / V^{n} W(R) \\
W(R)=\sum_{n}^{\lim _{n}} W_{n}(R)
\end{gathered}
$$

p-adic rings
A topological ring A is p-adic if $A=\underset{i}{\lim } A_{i}$, P nilpotent in $A_{i} \notin A_{i} \rightarrow A_{j}$ are sumjeative with nilpotent kernel.
[A_{i} are discentely topologized $+A$ has linit topology] (A, δ) is p-adic if δ is contimona.
e.g. $\left(\mathbb{Z}_{p}, \delta\right), \mathbb{Z}_{p}=\lim \mathbb{Z}_{p} n$

$$
\mathbb{Z}_{p}[|t|]=\lim _{m, n}\left(\mathbb{Z} / p_{p}[t]\right) / t^{m}
$$

If p milpotent in R, then

$$
W(R)=\lim _{t} W_{n}(R)
$$

Distinguished elements
(A, S) p-adic. $\xi \in A$ is distingnisted if
(1) ξ is topologically nilpotent
(2) $\delta(\xi)$ is a unit

These are stable under scaling by mits tunder continuous δ-maps
e.g.(a) \mathbb{Z}_{p}, p is distinguistued, $\delta(p)=\frac{p-p^{p}}{p_{x}}=1-p^{p-1}$ $a \in \mathbb{Z}_{p}$ distinguishd $\Leftrightarrow a=u p, u \in \mathbb{Z}_{p}^{*}$
(b) $\left(\mathbb{Z}_{p}[|t|], \delta(t)=0\right), \xi=p-t$ is distinguishel

$$
\delta(p-t) \equiv \delta(p) \quad \bmod (t)
$$

Is $p^{2}-t$ distinguishal? NO! $\delta\left(p^{2}-t\right)=\delta\left(p^{2}\right) \bmod (t)$
Is $p-t^{2}$ dirtinguishal? YES! $\delta\left(p-t^{2}\right)=\delta(p) \bmod (t)$

$$
\begin{aligned}
\xi & =\sum_{i=0}^{\infty} a_{i} t^{i} \quad a_{i} \in \mathbb{Z}_{p} \\
& =\sum_{i, j=0}^{\infty} s_{j} p^{j} t^{i} \quad s_{j} \in \mu_{p-1} \cup O \in \mathbb{Z}_{p} \\
& =\sum_{j=0}^{\infty} b_{j}(t) p^{j} \quad b_{j} \text { coeff's in } \mu_{p-1} \cup O \in \mathbb{Z}_{p}
\end{aligned}
$$

Distinguished when $b_{0}(t)$ top. mupotert it $b_{1}(t)$ is a unit.
$E(t)$ Eisenstein polynomial is distinguished
(c) $\xi \in W(R)$ distinguished if

$$
\xi=\sum_{i=0}^{\infty} v^{i}\left[r_{i}\right]
$$

$r_{0} \in R$ nilpotent $\# r_{1}$ is a unit
Σ
W = (pro) algebraic group of Witt vectors
$W^{X}=" \quad$ " "units in Witt vectors

$$
\begin{aligned}
& \mathbb{W}=\operatorname{spec}\left(\mathbb{Z}\left[x_{0}, x_{1}, \ldots\right]\right) \\
& \mathbb{W}^{\hat{p}}=\operatorname{colim}_{n} \operatorname{Spec}\left(\mathbb{Z} / \operatorname{pen}^{n}\left[x_{0}, x_{1}, \ldots\right]\right)
\end{aligned}
$$

W^{*}, \hat{p}
$\mathbb{W}_{\text {dist }} \subseteq \mathbb{W}^{\hat{p}}$ whose R-points ore the distinguished elements of $W(R)$

$$
\begin{aligned}
& \text { ide. } W_{\text {dist }}(R)=\left\{\begin{array}{cc}
\{\xi \in W(R): \rho \text { distinguished }\} & P_{\text {in } R}^{\text {nilpotet }} \\
\phi & \text { otherwise }
\end{array}\right. \\
& \Rightarrow \mathbb{W}_{\text {dist }}=\operatorname{colim}_{n, m} S_{p p e}\left(\left.\mathbb{Z}\right|_{p}\left[x_{0}, x_{1}^{ \pm}, x_{2}, \ldots\right] /\left(x_{0}^{m}\right)\right) \\
& \mathbb{W}^{*}, \hat{p} \subset \mathbb{W}_{\text {dist }} \\
& \Sigma=\left[\mathbb{W}_{\text {dist }} / \mathbb{W}^{*}, \hat{p}\right] \quad \begin{array}{l}
f_{\text {pec }} \text { stack (on rings) } \\
\text { quotient }
\end{array}
\end{aligned}
$$

(A, δ) p-adic δ-rify.
A distinguishal quasi-ideal
$(\xi: I \rightarrow A)$ is :
(1) I is projective rk | A-module
(2) ξ is a lines map such that after localization \& completion at any $f \in A$ that trivializs I, ξ sends a generator of I to a distinguishal elemat.

Prop If p is hilpotent in R,
$\Sigma(R)=\left\{\begin{array}{c}\text { groupoid of distinguishal quasivideals }\} \\ \text { of } W(R)\end{array}\right.$
$\begin{array}{cc}\text { Morphisms } \\ I_{1} & \xrightarrow{V} I_{2} \quad\binom{\text { eveng such } V \text { is }}{\text { an isomorphism }} \\ \xi_{1} \xi_{2}\end{array}$

Properties of Σ
$\psi: \Sigma \longrightarrow \Sigma$, indued by Witt vector Frobenius.

$$
\begin{aligned}
\Delta \subseteq \Sigma \text { divisor, } & \Delta(R) \subseteq \sum(R) \\
& \{(\xi: I \rightarrow W(R)): \xi(I) \subseteq \operatorname{ker}(p r)\}
\end{aligned}
$$

If $(A, \delta), A \xrightarrow{\delta} W(A)$, if A is p-adic continuous
($\xi: I \rightarrow A$), base charge along w to get an element of

Aside

$$
\begin{aligned}
& {\left[\mathbb{A}^{\prime} / G_{m}\right](R)=\{\text { groupoid of } \eta: L \rightarrow R, L \text { proc. }, k \mid\}} \\
& \text { aI } \\
& {\left[\hat{A}^{\prime} / G_{m}\right](R)=\left\{\begin{array}{lll}
n & " \quad & "+\eta^{\infty n}=0 \\
\text { for some } n
\end{array}\right\}} \\
& h: \Sigma(R) \rightarrow\left[\hat{A}^{\prime} / \mathbb{G}_{m}\right](R) \\
& (\xi: I \rightarrow W(R)) \longmapsto(\underset{\omega(R)}{\xi \otimes R: \underset{W(R)}{I \otimes R} \rightarrow R)}
\end{aligned}
$$

Prop h is algebraic \& faithfully flat
[That is, the fibers of f are quotients of afire scheres by flat affine groupoids]
Bremil-Kisin cover $\quad \delta(t)=0$.

$$
\underset{m, n}{\text { colima }} \operatorname{Sper}\left(\mathbb{Z} / p^{n}[t] / t^{m}\right)=S_{p} f\left(\mathbb{Z}_{p}[1+1]\right)^{f_{B K}} \xrightarrow{\longrightarrow}
$$

Just neal to specify object of:
$\sum\left(\mathbb{Z} / p^{n}[t] / t^{m}\right)$, so just neal dist et of $W\left(\mathbb{Z} / p^{n[t]} / t^{m}\right)$
Let $\xi=p-t: \mathbb{Z}_{p}[|t|] \xrightarrow{\delta} W\left(\mathbb{Z}_{p}[\mid+1]\right) \longrightarrow W\left(\mathbb{Z} / p^{p}[t] / t^{m}\right)$

Prop $f_{B K}$ is affine \& faithfully flat

