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Introduction

These notes will contain an overview of various things prismatic relative to a
general complete discrete valuation ring with finite residue field.

The theory here can be found in the case of Zp in Bhatt–Scholze [BS19], or
Drinfeld [Dri21] and [Dri]. Of course, any errors are my own.

1. Witt vectors and δ-structures

For now and forever we fix a complete discrete valuation ring O with maximal
ideal p, finite residue field k = O/p of cardinality q, a power of a prime p. When
convenient we also fix a generator π ∈ O of p. We write AlgO for the category of
O-algebras and Algp

O for the category of O-algebras in which p is nilpotent.

1.1. Witt vectors and δ-structures.

1.1.1. Definition. Let A be an O-algebra. A δ-structure on A is a map δπ : A→ A
satisfying the following identities:

(1) δπ(x+ y) = δπ(x) + δπ(y)−
∑q−1
i=1

1
π

(
q
i

)
xq−iyi. 1

(2) δπ(xy) = xpδπ(y) + δπ(x)yq + πδπ(x)δπ(y).
(3) δπ(a) = (a− aq)/π for a ∈ O.

This does not depend on the uniformiser π chosen in the sense that if π′ = λπ
for λ ∈ O× then a map δπ satisfies the identities above if and only if the map δπ′ :=
λ−1δπ satisfies the analogous identities with π replaced everywhere by λπ = π′. In
any case, the purpose of this structure is realised when we define the map

ϕ : A→ A : x 7→ ϕ(x) := xq + πδπ(x)

which the reader readily checks is an O-algebra homomorphism ϕ : A → A lifting
the q-power Frobenius modulo p. A morphism of δ-rings is any O-algebra homo-
morphism commuting with the δ maps and AlgδO denotes the category of δ-rings.

1.1.2. The torsion free case. If A is p-torsion free then δ-structures on A are in
bijective correspondence with O-algebra homomorphisms ϕ : A → A lifting the
q-power Frobenius via

ϕ 7→ δ : x 7→ ϕ(x)− xq

π
.

If A is not p-torsion free then it really is extra structure but, as explained by
Bhatt-Scholze, δ-structures are really ‘derived’ Frobenius lifts.

1.1.3. Witt vectors and arithmetic jets. The forgetful functor AlgδO → AlgO admits
both a left and a right adjoint. The right adjoint is given by the O-Witt vectors
WO and the left adjoint by the O-arithmetic Jet ring JO.

Composed with the forgetful functor these adjoints give a comonad and monad
respectively on the category of O-algebras and a coaction of WO (resp. action of JO)
on an O-algebra is the same as a δO-structure. The coaction map of WO(R) on itself
is denoted w : WO(R)→WO(WO(R)) and called the Artin-Hasse exponential.

1Here 1
π

(q
i

)
for 1 ≤ i ≤ q− 1 denotes the unique element in O which multiplied by π gives

(q
i

)
.
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1.1.4. Coordinates on the Witt vectors. The Witt vector functor WO is co-represented
by JO(O[t]) = O{t} which is, by definition, the free δ-ring on a single generator.
As an O-algebra, it is a polynomial algebra on countably many generators given by
the elements δi := δ◦i(t) ∈ O{t}:

O{t} ∼−→ O[δ0, δ1, . . .].

These generators induce the ‘Joyal coordinates’ on the Witt vectors:

WO(R) = HomO(O{t},R)
∼−→

∞∏
i=0

R : f 7→ (f(δ0), f(δ1), . . .).

The O-algebra structure on the infinite product
∏∞
i=0 R induced by the isomor-

phism above is the unique functorial one such that:

(i) The projection:

∞∏
i=0

R→ R : (δ0, δ1, δ2 . . .)→ δ0

is an O-algebra homomorphism.
(ii) The map

∞∏
i=0

R→
∞∏
i=0

R : (δ0, δ1, . . .) 7→ (δq0 + πδ1, δ
q
1 + πδ2, . . .)

is an O-algebra homomorphism. This homomorphism corresponds to the
Frobenius ϕ on the Witt vectors.

There is a second set of coordinates on WO(R) called the ‘Witt coordinates’. If
we denote them by di ∈ O{t} for i = 0, 1, . . . then d0 = δ0 = t and the rest are
defined inductively to be the unique elements of O{t} such that ϕ◦n(t) ∈ O{t} is
given by the formula

ϕ◦n(t) =

n∑
i=0

πidq
n−i

i = dq
n

0 + πdq
n−1

1 + π2dq
n−2

2 + · · ·+ πndn.

This induces a second isomorphism WO(R)
∼−→
∏∞
i=0 R and the resulting O-algebra

structure on
∏∞
i=0 R is the unique functorial one such that the maps

gn :

∞∏
i=0

R→ R : (d0, d1, d2 . . .)→
n∑
i=0

πidq
n−i

i

are O-algebra homomorphisms for i ≥ 0. A coordinate free description of these
maps

gn : WO(R)→ R

is iterates of the Frobenius ϕn composed with the canonical projection WO(R)→ R
and are called the ghost maps.

1.1.5. Teichmüller map. The O-algebra O[t] has a unique δ-structure with Frobe-
nius lift ϕ(t) = tq. By adjunction we find a unique δ-map

O{t} → O[t]

and the induced map

[−] : R→WO(R)
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is the Teichmüller map. It is the unique multiplicative (but in general non-additive)
section of the projection WO(R)→ R.

1.1.6. Verschiebung. The kernel of the projection WO(R) → R is denoted by
VW(R) and called the Verschiebung ideal. The restriction of the Frobenius to
VW(R) has image contained in pW(R) and it can be lifted to a unique functorial
isomorphism

ϕ : VW(R)
∼−→ p⊗W(R).

The inverse of this isomorphism is called the Verschiebung map

V : p⊗W(R)
∼−→ VW(R) ⊂W(R).

We denote by Vπ the map Vπ(w) = V(π ⊗ w) which in terms of the Witt co-
ordinates is given by

Vπ(d0, d1, . . .) = (0, d0, d1, . . .).

The Verschiebung (so normalised) satisfies the relations:

(i) ϕ(Vπ(w)) = πw,
(ii) Vπ(ϕ(w)w′) = wVπ(w′),

(iii) Vπ(w)Vπ(w′) = πVπ(ww′).

1.1.7. Finite length Witt vectors. The image of the nth iterate Vn
π of the Ver-

schiebung is denoted by VnW(R) and called the nth Verschiebung ideal. The
quotient WO,n(R) := WO(R)/VnWO(R) is the ring of length n Witt vectors and
we have

WO,n(R)
∼−→ lim

n
WO,n(R).

This equips WO(R) with a natural topology, or better, a natural pro-ring structure.
The maps δ, ϕ, Vπ and w are compatible with this structure and induce maps

δ, ϕ : WO,n+1(R)→WO,n(R) Vi
π : WO,n(R)→WO,n+i(R)

and

w : WO,n+m(R)→WO,n(WO,m(R))

and then short exact sequences

0→WO,n(R)
Viπ−→WO,n+i(R)→WO,i(R)→ 0

for all 0 ≤ i ≤ n ≤ ∞ (where i, n =∞ means the infinite length Witt vectors).

1.1.8. Witt vectors as series. It follows that using the Teichmüller and the Ver-
schiebung we can uniquely write any Witt vector w ∈WO(R) as an infinite series

w =

∞∑
i=0

Vi
π[ri]

with r0, r1, . . . ∈ R. The induced coordinates agree with the Witt coordinates
defined earlier.
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1.1.9. Witt vectors, nilpotent ideals and étale maps. If R → R′ is an étale homo-
morphism then for all finite n and all homomorphisms R→ R′′, the natural map

WO,n(R′)⊗WO,n(R) WO,n(R′′)
∼−→WO,n(R′ ⊗R R′′)

is an isomorphism.
For 1 ≤ n ≤ ∞ and I ⊂ R an ideal we write WO,n(I) = ker(WO,n(R) →

WO,n(R)). Then:

(i) If I is nilpotent and 1 ≤ n <∞ then WO,n(I) is also nilpotent.
(ii) If p is nilpotent in R then Vi

πWO,n(R) ⊂ WO,n+i(R) is nilpotent, as is
pWO,n(R).

(iii) We have ϕ(WO,n(I)) ⊂WO,n−1(Iq + πI) (use Joyal coordinates).

1.1.10. Witt vectors of k-algebras. If R is an O/p = k-algebra then the Witt vec-
tor Frobenius ϕ coincides with WO(Frq). This implies that the Verschiebung and
Frobenius actually commute

ϕ(Vπ(w)) = Vπ(ϕ(w)) = πw.

In fact, this is equivalent to R being a k-algebra. In particular, if the Frobenius is
an isomorphism on R, it is on WO(R) and Vi

π = πiϕ−i. In this case, every element
of WO(R) can be written uniquely as a ‘power series in π’:

w =

∞∑
i=0

[ri]π
i.

Note that this implies that WO(R) is π-torsion free.

1.1.11. The case O = Fq[[π]]. If O = Fq[[π]] is equi-characteristic and R is an
Fq[[π]]-algebra then the Teichmüller map

[−] : R→WFq [[π]](R)

is an Fq-linear ring homomorphism, that is it is not only multiplicative but also
additive. It is not an Fq[[π]]-algebra homomorphism, as [π] 6= π in WFq [[π]](R).
However, there is an induced Fq[[π]]-linear map

R⊗Fq Fq[[π]]→WFq [[π]](R).

If R is π-adically complete (the case we are mainly interested in) then this map
extends by continuity to a map

R[[π]]→WFq [[π]](R)

which is in general is neither surjective nor injective. However, if R is perfect (i.e.
the q-power Frobenius is an isomorphism) then it is an isomorphism. Moreover, for
any R, R[[π]] has a unique δ-structure, given by δ(r) = 0 for r ∈ R ⊂ R[[π]], for
which the R[[z]]→WFq [[π]](R) is a δ-homomorphism.

1.2. δ-structures on sheaves.
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1.2.1. Pro-rings and ind-affine sheaves. Let Algpro
O denote the category of pro-O-

algebras. We denote a general object of this category by

“ lim
i∈I

Ri”.

Then the Yoneda embedding R 7→ Spec(R) extends to the category of pro-O-
algebras by

“ lim
i∈I

Ri” 7→ colim
i∈I

Spec(Ri)

and this functor is fully faithful. The essential image of this functor is the category
of ind-affine sheaves Aff ind

O .

1.2.2. Witt vectors of sheaves. Given a sheaf X, writing it as its ‘Yoneda colimit’

X
∼−→ colim

Spec(R)→X
Spec(R)

we define

WO,n(X) := colim
Spec(R)→X

Spec(WO,n(R)) and WO(X) = colim
n

WO,n(X).

If X = Spec(R) is affine then

WO(Spec(R)) = colim
n

Spec(WO,n(R))

is identified with the ind-affine scheme corresponding to the pro-ring “ lim
n

WO,n(R)”.

1.2.3. δ-structures on sheaves. The functor WO on ShO defines a monad (the vari-
ance has changed) and a δ-structure on sheaf is an action of this monad. We write
ShδO for the category of δ-sheaves (that is sheaves equipped with a δ-structure) and
note that the forgetful functor to the category of sheaves commutes limits, disjoint
unions and filtered colimits. Moreover, X 7→ WO(X) is (by definition) left adjoint
to the forgetful functor.

Of course, any δ-sheaf X has a lift of q-power Frobenius ϕ : X→ X.

1.2.4. Arithmetic jet (pre)sheaves. The forgetful functor from δ-sheaves to all sheaves
wants to have a right adjoint given by the Jet space:

JO(X) := lim
n

X ◦WO,n.

However JO(X) is not in general an fpqc sheaf as the functors WO,n are not contin-
uous for the fpqc topology (although they are continuous for the étale topology).
Whenever the presheaf JO(X) defined above is a sheaf, the adjunction property
holds – in particular for X a scheme (as in this case each presheaf JO,n(X) := X◦JO,n

is itself a scheme). In general, we will see later that after ‘perfecting’ the functor
JO becomes continuous.

1.2.5. p-adic sheaves. The terminal object Spec(O) in ShO has a natural subsheaf

Spf(O) := colim
i

Spec(O/pi) ⊂ Spec(O)

whose value on an O-algebra R is the singleton if p is nilpotent in R and empty
otherwise. A sheaf X ∈ ShO is said to be p-adic if its structure map X→ Spec(O)
factors through Spf(O) ⊂ Spec(O). We will write Shp

O for this category.
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1.2.6. p-adic δ-sheaves. We now arrive at our final destination which is the category
of p-adic δ-sheaves. Note that Shp

O is stable under the functor WO as if p is nilpotent
in R it is also nilpotent in Wn,O(R) so that Spec(WO,n(R)) is a p-adic sheaf and
therefore so is WO(Spec(R)). We denote by ShδO the category of p-adic sheaves
equipped with a δ-structure and compatible morphisms. It will be useful later to
note that if p is nilpotent in R then the morphisms WO,n(Spec(R))→WO(Spec(R))
are representable by nilpotent immersions.

1.3. Stacks and quasi-coherent modules.

1.3.1. ‘Algebraic’ stacks. A morphism of schemes f : X→ Y is said to be fpqc if it
is faithfully flat and a covering morphism for the fpqc topology.

A stack X is said to be algebraic if there exists a morphism X → X from a
scheme X which is representable by fpqc morphisms. A morphism f : X → Y
of stacks is said to be algebraic if for all affine schemes Spec(R) → Y the stack
X ×Y Spec(R) is algebraic. Algebraic morphisms are preserved under composition,
base change and satisfy fpqc descent.

1.3.2. Quasi-coherent modules. If X is a sheaf2 (p-adic if you like, but for this it is
not important) then a quasi-coherent module M on X is defined to be the following
data: for all maps f : Spec(R)→ X, we are given an R-module

Mf

and for all morphisms h : Spec(R′)→ Spec(R) an isomorphism

h∗(Mf )
∼−→Mf◦h

satisfying the usual compatibility conditions, where the first h∗ denotes the usual
base change induced by h : R→ R′. We denote by QCoh(X) the category of quasi-
coherent modules on X. We write OX for the quasi-coherent module (OX)f = R.
Of course, X 7→ QCoh(X) is just the right Kan extension of its restriction to affine
schemes.

When X = Spec(R), or more generally any scheme, QCoh(X) agrees with the
usual notion. In general, if we can write X = colimi Xi then

QCoh(X)
∼−→ lim

i
QCoh(Xi)

whence the observation that QCoh(X) may in general not be abelian. In particular,
if X = Spf(O) then QCoh(X) is equivalent to the category of p-adically complete
O-modules, which is not abelian. If we can write X = colimi Xi in such a way
that each QCoh(Xi) is abelian and the transition maps induce exact functors on
quasi-coherent modules e.g. for a scheme and an open cover by affines, but it works
more generally.

If f : X→ Y is a morphism of sheaves and M is a quasi-coherent module on Y
then f∗(M ) is defined by setting, for any h : Spec(R)→ X

f∗(M )h := Mf◦h.

2It could also be a presheaf - the definition never uses that X is a sheaf. The same definition

also works for stacks or prestacks, with the usual modifications: if X is a (pre)stack then we ask
for functor functors X (R) → Mod(R) satisfying various compatibilities (rather than just maps

X(R)→ Mod(R) for presheaves X).
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We say that M is a vector bundle if f∗(M ) is a finite projective R-module for
all f : Spec(R)→ X and that M and a line bundle if it is finite projective of rank
one.

An important case is when X = colimi Spec(Ri) is an ind-affine scheme. Then a
line bundle L on X is by definition a compatible collection Li of rank one projective
Ri-modules. If moreover the transition maps Ri → Rj have kernels generated
by nilpotent elements, we see that as soon as one Li is free all of them are and
L

∼−→ OX. In particular, any affine open cover of one Spec(Ri) induces unique
compatible open covers of all the Spec(Rj). Thus in this case, there is a relative
affine open cover of X with the property that the pull-back of L to this open cover
is free.

Given a quasi-coherent module M on X we can turn it into a ‘physical’ object
over X, that is an actual sheaf over X, as follows. We define V(M ) to be the sheaf
over X whose set of sections over a sheaf f : Y → X is

V(M )(Y) := HomQCoh(Y)(OY, f
∗(M )).

In this way, we see that V(OX)
∼−→ A1

X. That is

V(OX)(Y) = HomQCoh(Y)(OY, f
∗(OX)) = HomX(Y,A1

X).

More generally, a quasi-coherent module E on X is a vector bundle if and only if
V(E ) is locally3 isomorphic to V(On

X) = An
X.

2. Prisms

2.1. Distinguished elements and quasi-ideals.

2.1.1. Distinguished elements. Let R be an O in which p is nilpotent, i.e. R ∈
Algp

O, and consider the Witt vectors W(R). We say than an element ξ ∈ W(R) is
distinguished if one of the following equivalent conditions hold:

(i) ξ = [ξ0] + Vπ[ξ1] + · · · with ξ0 ∈ R nilpotent and ξ1 ∈ R invertible,
(ii) ξ = [ξ0] + Vπ(w) with ξ0 ∈ R nilpotent and w ∈W(R) a unit,
(iii) The image of ξ in Wn(R) is nilpotent for each n ≥ 1 and δ(ξ) ∈W(R) is a

unit.

The fundamental example of a distinguished element is π ∈W(R).

2.1.2. Proposition (Properties of distinguished elements). Let R be an O/pr-
algebra and let ξ ∈W(R).

(i) ξ is distinguished if and only if ϕ(ξ) is distinguished.
(ii) If ξ is distinguished and u ∈ W(R) then ξ′ := uξ is distinguished if and

only if u is a unit.
(iii) If ξq

n

= 0 mod VW(R) for some n ≥ 0, then ϕn+1(ξ) = uπ where u is a
unit.

(iv) If ξ is distinguished, ξq
n

= 0 mod VW(R) for some n ≥ 0 and uξ = ξ then
ϕn+r+1(u) = 1.

(v) If f : R → R′ is a homomorphism and ξ ∈ W(R) is distinguished then
W(f)(ξ) ∈W(R′) is distinguished.

3Here locally is meant in the most general sense: after base change along an epimorphism
X′ → X of fpqc sheaves.
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Proof. (i) As ϕ(ξ) = ξq + πδ(ξ) and π is topologically nilpotent, we see that ξ is
topologically nilpotent if and only if ϕ(ξ) is topologically nilpotent. Similarly,

δ(ϕ(ξ)) = ϕ(δ(ξ)) = δ(ξ)q + π(δ(δ(ξ)))

so that δ(ϕ(ξ)) is a unit if and only if δ(ξ) is a unit.
(ii) If ξ is distinguished and u ∈ W(R) is a unit then ξ′ = uξ is topologically

nilpotent and
δ(uξ) = uqδ(ξ) + ϕ(ξ)δ(u)

is a unit as uqδ(ξ) is a unit and ϕ(ξ) is topologically nilpotent.
Conversely, if u ∈ W(R) is any element such that ξ′ = uξ is distinguished then

the same equality
δ(uξ) = uqδ(ξ) + ϕ(ξ)δ(u)

shows that uq and hence u must be a unit.
(iii) We have ξ = [ξ0] + Vπ(w) where w is a unit and ξq

n

= 0 mod VW(R) is

equivalent to ξq
n

0 = 0 in R. Therefore,

ϕn+1(ξ) = ϕn+1([ξ0]) + ϕn+1(Vπ(w)) = [ξq
n+1

0 ] + πϕn(w) = πϕn(w).

(iv) By (iii) we are reduced to showing that if uπ = π then ϕr(u) = 1. If r = 1,
so that π = 0 in R, then ϕ ◦Vπ = Vπ ◦ ϕ = π so that

0 = p(u− 1) = ϕ(Vπ(u− 1)) = Vπ(ϕ(u− 1)).

As Vπ is injective this implies that ϕ(u) = 1.
In general, this shows that ϕ(u−1) ∈W(pR) = ker(W(R)→W(R/p)). However,

we have ϕ(W(piR)) ⊂W(pi+1R) so that if pr = 0 we get:

ϕr(u− 1) = ϕr−1(ϕ(u− 1)) ∈ ϕr−1(W(pR)) ⊂W(prR) = 0.

(v) Clear. �

2.1.3. Distinguished quasi-ideals over Witt vectors. Write S = Spec(R). A distin-
guished quasi-ideal on W(S) is a line bundle I on W(S) equipped with a map

ξ : I → OW(S)

such that on one (or any) open cover4 over which I
∼−→ OW(S) is trivialised,

ξ ∈ Hom(OW(S),OW(S)) = W(R)

is distinguished. A morphism of distinguished quasi-ideals

u : (ξ : I → OW(S))→ (ξ′ : I → OW(S))

is any morphism u : I → I ′ such that ξ′ ◦ u = ξ.
If S′ = Spec(R′) and f : S′ → S is a morphism then we write

f∗(ξ : I → OW(S)) = (f∗(ξ) : f∗(I )→ OW(S))

which is again a distinguished quasi-ideal by (v) of (2.1.2).
Given a distinguished quasi-ideal (ξ : I → OW(S)) and writing i : S → W(S)

for the natural closed immersion let us set i∗(I ) = I0 and ξ0 = i∗(ξ). Then we

4Such open covers exist because the transition maps Spec(Wn(R)) → Spec(Wn+1(R)) are

nilpotent immersions. Any open subscheme of any Spec(R) lifts uniquely to a compatible family
of open subschemes of the Spec(Wn(R)) and hence to a (representable) open subscheme of the
colimit W(Spec(R)). Indeed, if U ⊂ Spec(R) is an open immersion then W(U) → W(Spec(R))
is also an open immersion. Similarly, a line bundle on W(Spec(R)) is trivial if and only if its

restriction to Spec(R) is trivial as trivialisations can always be lifted along nilpotent immersions.
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have a morphism of line bundles (ξ0 : I0 → OS) over S. As (ξ : I → OW(S)) is

distinguished it follows that ξ⊗q
n

0 is the zero map for some n ≥ 0.

2.1.4. Remark. A distinguished quasi-ideal on W(S) for S = Spec(R) with p nilpo-
tent in R is the same as a projective rank one W(R)-module I, together with a
map ξ : I → W(R) such that, Zariski locally on R, ξ sends a generator of I to a
distinguished element of W(R).

2.1.5. Principal distinguished quasi-ideals. If ξ ∈W(R) = Hom(OW(S),OW(S)) is a
distinguished element then (ξ : OW(S) → OW(S)) is a distinguished quasi-ideal and
a distinguished quasi-ideal is said to be principal and generated by ξ ∈W(R) if it
is isomorphic to one of this form.

2.1.6. Proposition (Properties of distinguished quasi-ideals over Witt vectors).
Let S = Spec(R) where pr = 0 in R.

(i) Every morphism of distinguished quasi-ideals over W(S) is an isomorphism.
(ii) If (ξ : I → OW(S)) is a distinguished quasi-ideal then so is (ϕ∗(ξ) :

ϕ∗(I → OW(S)), and moreover it is principal.

(iii) If (ξ : I → OW(S)) is a distinguished quasi-ideal and ξ⊗q
n

0 = 0 for some
n ≥ 0 then there exists an isomorphism

(ip : p⊗ OW(S) → OW(S))
∼−→ ϕn+1∗(ξ : I → OW(S)).

(iv) If u is an automorphism of a distingiushed quasi-ideal (ξ : I → OW(S))

with the property that ξ⊗q
n

0 = 0 for some n ≥ 1, then ϕn+r+1∗(u) = id.

Proof. (i) It suffices to work locally and so we may assume that I is principal in
which case it follows (ii) of (2.1.2).

(ii) The line bundle I and the morphism ξ : I → OW(S) correspond to a
compatible collection of rank one projective Wn(R)-modules In and compatible
maps ξn : In →Wn(R) and the claim is that the compatible collection ϕ∗(In+1) of
Wn(R)-modules is free.

First, we define for each n ≥ 1 a map

In+1 →Wn(R)/ξn(In) : i 7→ δπ(ξn+1(i)) mod ξn(In).

We claim that this map is additive and ϕ-linear. In proving this, for clarity we
will denote the reduction maps Wn+1(R) →Wn(R) and In+1 → In by x 7→ x. By

definition we have: ξn+1(i) = ξn(i).
Now, for additivity we have:

δπ(ξn+1(i+ j)) = δπ(ξn+1(i) + ξn+1(j))

= δπ(ξn+1(i)) + δπ(ξn+1(j)) +

q−1∑
k=1

1

π

(
q

k

)
ξn+1(i)q−kξn+1(j)k

= δπ(ξn+1(i)) + δπ(ξn+1(j)) +

q−1∑
k=1

1

π

(
q

k

)
ξn(i)q−kξn(j)k

= δπ(ξn+1(i)) + δπ(ξn+1(j)) mod ξn(In)
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For the semi-linearity we have:

δπ(ξn+1(wi)) = δπ(wξn+1(i))

= ϕ(w)δπ(ξn+1(i)) + δπ(w)ξn+1(i)
q

= ϕ(w)δπ(ξn+1(i)) + δπ(w)ξn(i)q

= ϕ(w)δπ(ξn+1(i)) mod ξn(In)

Therefore, we have defined a ϕ-linear map In+1 → p ⊗Wn(R)/ξn(In) which
induces a linear map

ϕ∗(In+1)⊗Wn(R) Wn(R)/(ξn(In))→ p⊗Wn(R)/ξn(In).

This is a homomorphism of rank one projective Wn(R)-modules and it is an isomor-
phism as it comes from a distinguished quasi-ideal: locally In+1 admits a generator
i with the property that δπ(ξn+1(i)) is invertible in Wn(R).

Therefore, ϕ∗(In+1) is free and as Wn+1(R)→Wn(R) is surjective with nilpotent
kernel, it follows that we can compatibly lift generators and hence ϕ∗(I ) is free.

(iii) By induction we are reduced to the case n = 0. As in (ii) let ξ : I → OW(S)

correspond to the compatible system ξm : Im →Wm(R). As ξ0 = 0 it follows that
ξm factors through VπWm−1(R) ⊂ Wm(R) and so we can write each ξm uniquely
as Vπ ◦ βm where βm : Im → Wm−1(R) is a ϕ-linear map and by uniqueness we
have βm = βm−1.

We then see that ϕ∗(ξm) : ϕ∗(Im)→Wm−1(R) is the linearisation of the ϕ-linear
map πβm : Im →Wm−1(R). The linearisations of the βm now define a compatible
collection of maps

ϕ∗(Im)
π⊗βm→ p⊗Wm−1(R)

such that ϕ∗(ξm) = ip ◦ (π⊗ βm). Therefore, we have a morphism of distinguished
quasi-ideals

(ϕ∗(ξ) : I → OW(S))→ (ip : p⊗ OW(S) → OW(S))

which by (i) is an isomorphism.
(iv) Arguing locally this follows from (iv) of (2.1.2). �

2.2. Prisms and Σ.

2.2.1. Distinguished quasi-ideals over general sheaves. Let X be a p-adic δ-sheaf. A
distingiushed quasi-ideal over X is a morphism of line bundles (ξ : I → OX) such
that, for all rings R and all morphisms Spec(R)→ X, the pull-back of (ξ : I → OX)
along the δ-map W(Spec(R))→ X induced by adjunction is a distinguished quasi-
ideal in the sense of (2.1.3).

2.2.2. Prisms. A prism is a pair (X, (ξ : I → X)) where X is a p-adic δ-sheaf and
(ξ : I → X) is a distinguished quasi-ideal. A morphism of prisms

(f, u) : (X, (ξX : IX → X))→ (Y, (ξY : I → Y))

consists a δ-morphism f : X→ Y and a morphism of distinguished quasi-ideals

u : f∗(IY)→ IX.

Note that u is necessarily an isomorphism.
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2.2.3. Drinfeld’s stack Σ. The R-points of the p-adic stack Σ are given by

Σ(R) := {groupoid of distinguished quasi-ideals (ξ : I → OW(Spec(R)))}.
We denote by ϕΣ : Σ→ Σ the morphism which on R-points is induced by pull-back
along the Frobenius W(Spec(R))→W(Spec(R)).

2.2.4. Σ in terms of distinguished elements. Write W for the affine group scheme
whose R-points is the ring of Witt vectors W(R) := W(R). Note that W is
isomorphic to the affine scheme Spec(O{t}).

Abusing notation we will also write W for W ×Spec(O) Spf(O).
Now, let Wdist ⊂W denote the subsheaf whose R-points are those ξ ∈W(R) =

W(R) which are distinguished. Thus, we have

Wdist = colim
n,m

Spec(O[t, δ◦1(t)±1, δ◦2(t), . . .]/(pn, tm)).

We write W× ⊂ W for the subsheaf whose set of R-points is the group of units
in W(R) = W(R) (Note, can be shown that W× → W is an inverse limit of open
immersions).

Then, W× acts on Wdist via multiplication and the map

Wdist → Σ

sending a distinguished element to the associated principal distinguished quasi-ideal
identifies Σ with the stack-theoretic quotient

Wdist/W
× ∼−→ Σ.
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