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2 LANCE GURNEY

INTRODUCTION

These notes will contain an overview of various things prismatic relative to a
general complete discrete valuation ring with finite residue field.

The theory here can be found in the case of Z, in Bhatt—Scholze [BS19], or
Drinfeld [Dri21] and [Dri]. Of course, any errors are my own.

1. WITT VECTORS AND 0-STRUCTURES

For now and forever we fix a complete discrete valuation ring O with maximal
ideal p, finite residue field k = O/p of cardinality ¢, a power of a prime p. When
convenient we also fix a generator 7 € O of p. We write Alg, for the category of
O-algebras and Alg'f9 for the category of O-algebras in which p is nilpotent.

1.1. Witt vectors and §-structures.

1.1.1. Definition. Let A be an O-algebra. A d-structure on A is a map 6, : A — A
satisfying the following identities:

(1) Ox (@ +y) = 0n () + 0x(y) — S0} L (7)a0-iyi. !
(2) 67r(xy) = xp(s‘n'(y) + 671'('7;)yq + Wéﬂ(x)éﬂ(y)'
(3) dx(a) = (a—a?)/m for a € O.

This does not depend on the uniformiser m chosen in the sense that if 7’ = Arx
for A € O* then a map J, satisfies the identities above if and only if the map 6,/ :=
A716, satisfies the analogous identities with 7 replaced everywhere by A7 = 7. In
any case, the purpose of this structure is realised when we define the map

p: A=Az o) =24+ 76, (x)

which the reader readily checks is an O-algebra homomorphism ¢ : A — A lifting
the g-power Frobenius modulo p. A morphism of é-rings is any O-algebra homo-
morphism commuting with the ¢ maps and Alg;  denotes the category of d-rings.

1.1.2. The torsion free case. If A is p-torsion free then J-structures on A are in
bijective correspondence with O-algebra homomorphisms ¢ : A — A lifting the
g-power Frobenius via
p(r) -z

- .
If A is not p-torsion free then it really is extra structure but, as explained by
Bhatt-Scholze, §-structures are really ‘derived’ Frobenius lifts.

=0T

1.1.3. Witt vectors and arithmetic jets. The forgetful functor Algs, — Algy admits
both a left and a right adjoint. The right adjoint is given by the O-Witt vectors
W and the left adjoint by the O-arithmetic Jet ring Jg.

Composed with the forgetful functor these adjoints give a comonad and monad
respectively on the category of O-algebras and a coaction of Wy (resp. action of Jo)
on an O-algebra is the same as a dp-structure. The coaction map of Wy (R) on itself
is denoted w : Wo(R) = W (We(R)) and called the Artin-Hasse exponential.

Here %(f) for 1 <14 < g—1 denotes the unique element in O which multiplied by 7 gives (‘Z)
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1.1.4. Coordinates on the Witt vectors. The Witt vector functor W is co-represented
by Jo(O[t]) = O{t} which is, by definition, the free J-ring on a single generator.
As an O-algebra, it is a polynomial algebra on countably many generators given by
the elements §; := 6°/(t) € O{t}:

O{t} = O[bo, 1, - ..

These generators induce the ‘Joyal coordinates’ on the Witt vectors:

Wo(R) = Home (0{t},R) = [[R: £ = (£(d0), f(51),- ).
i=0
The O-algebra structure on the infinite product Hioio R induced by the isomor-
phism above is the unique functorial one such that:

(i) The projection:

[[R = R:(d0,61,82...) = do
i=0
is an O-algebra homomorphism.
(ii) The map

IR = []R: (60,61,...) > (58 + w61, 65 + 7da, ..
=0 =0

is an O-algebra homomorphism. This homomorphism corresponds to the
Frobenius ¢ on the Witt vectors.

There is a second set of coordinates on W (R) called the ‘Witt coordinates’. If
we denote them by d; € O{t} for i = 0,1,... then dy = §y = ¢ and the rest are
defined inductively to be the unique elements of O{t} such that ¢°"(t) € O{t} is
given by the formula

() =Y wd? = dl wd] 4 wldl 4 md,
i=0

This induces a second isomorphism We (R) — []52, R and the resulting O-algebra
structure on Hfio R is the unique functorial one such that the maps

o0 n
gn: [[R =Rt (doydi,dy..) =Y wldl
i=0 i=0
are O-algebra homomorphisms for ¢ > 0. A coordinate free description of these
maps
gn: We(R) = R

is iterates of the Frobenius ¢™ composed with the canonical projection Wy (R) — R
and are called the ghost maps.

1.1.5. Teichmiiller map. The O-algebra O[t] has a unique d-structure with Frobe-
nius lift () = t9. By adjunction we find a unique d-map
O{t} — O[]
and the induced map
[-]: R = Wo(R)
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is the Teichmiiller map. It is the unique multiplicative (but in general non-additive)
section of the projection W (R) — R.

1.1.6. Verschiebung. The kernel of the projection Wo(R) — R is denoted by
VW(R) and called the Verschiebung ideal. The restriction of the Frobenius to
VW(R) has image contained in pW(R) and it can be lifted to a unique functorial
isomorphism

¢: VW(R) == p @ W(R).
The inverse of this isomorphism is called the Verschiebung map
V:p@W(R) = VW(R) c W(R).

We denote by V, the map V,(w) = V(7 ® w) which in terms of the Witt co-
ordinates is given by

Vx(do,d1,...) = (0,do,dn,...).
The Verschiebung (so normalised) satisfies the relations:

(i) @(Va(w)) = mw,
(i) Va(p(w)w') = wVa(w'),
(ili) Vi(w)Vz(w') = 7V (ww').

1.1.7. Finite length Witt vectors. The image of the nth iterate V! of the Ver-
schiebung is denoted by V*W(R) and called the nth Verschiebung ideal. The
quotient Wg ,(R) := Wo(R)/V*"We(R) is the ring of length n Witt vectors and
we have

Wo’n(R) ;> lim Wo’n(R)

This equips W (R) with a natural topology, or better, a natural pro-ring structure.
The maps d, ¢, V, and w are compatible with this structure and induce maps

5,0 : Woni1(R) = Won(R)  Vi:Wg,(R) = We,pi(R)
and
w Wom_;,_m(R) — Wo,n (W()’m(R))
and then short exact sequences
0— Won(R) ALY Wonti(R) = Woi(R) = 0

for all 0 <7 <n < co (where i,n = 0o means the infinite length Witt vectors).

1.1.8. Witt vectors as series. It follows that using the Teichmiiller and the Ver-
schiebung we can uniquely write any Witt vector w € We(R) as an infinite series

w = i Vi [ril
=0

with rg,71,... € R. The induced coordinates agree with the Witt coordinates
defined earlier.
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1.1.9. Witt vectors, nilpotent ideals and étale maps. If R — R’ is an étale homo-
morphism then for all finite n and all homomorphisms R — R/, the natural map

W@m(R/) ®W@,n(R) Woyn(RH) AN Wo)n(R/ QR RH)

is an isomorphism.
For 1 < n < oo and I C R an ideal we write Wg ,(I) = ker(Wo ,(R) —
Wo,n(R)). Then:
(i) If I is nilpotent and 1 < n < oo then W ,,(I) is also nilpotent.
(ii) If p is nilpotent in R then ViWg ,(R) C W ,4:(R) is nilpotent, as is
pWo,n(R).
(iii) We have o(Wo n(I)) C Wo n—1(I7 + 7I) (use Joyal coordinates).

1.1.10. Witt vectors of k-algebras. If R is an O/p = k-algebra then the Witt vec-
tor Frobenius ¢ coincides with W (Fr?). This implies that the Verschiebung and
Frobenius actually commute

@(Vﬂ'(w)) = Vﬂ(@(w)) = Tw.

In fact, this is equivalent to R being a k-algebra. In particular, if the Frobenius is
an isomorphism on R, it is on Wy (R) and VL = w'¢~". In this case, every element
of We(R) can be written uniquely as a ‘power series in 7’

oo

w = Z[rl]ﬂ'Z

i=0
Note that this implies that Wy (R) is m-torsion free.

1.1.11. The case O = F[[n]]. If O = Fy[[r]] is equi-characteristic and R is an
F,[[r]]-algebra then the Teichmiiller map

[=]: R = Wg, ) (R)

is an Fg-linear ring homomorphism, that is it is not only multiplicative but also
additive. It is not an F,[[r]]-algebra homomorphism, as [7] # 7 in Wg,_ [ (R).
However, there is an induced F[[n]]-linear map

R er, Fy([7]] = Wg, ) (R).

If R is m-adically complete (the case we are mainly interested in) then this map
extends by continuity to a map

R[[7]] = W, (1)) (R)

which is in general is neither surjective nor injective. However, if R is perfect (i.e.
the g-power Frobenius is an isomorphism) then it is an isomorphism. Moreover, for
any R, R[[r]] has a unique d-structure, given by d(r) = 0 for »r € R C R][n]], for
which the R[[z]] = Wg_(jz)(R) is a 6-homomorphism.

1.2. é-structures on sheaves.
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1.2.1. Pro-rings and ind-affine sheaves. Let Algl)® denote the category of pro-O-
algebras. We denote a general object of this category by
“limR;”.
iel
Then the Yoneda embedding R +— Spec(R) extends to the category of pro-O-
algebras by
“limR;” > colim Spec(R;)
icl i€l

and this functor is fully faithful. The essential image of this functor is the category
of ind-affine sheaves Affin,

1.2.2. Witt vectors of sheaves. Given a sheaf X, writing it as its ‘Yoneda colimit’

X = i S R
7 g Lol Spec(R)

we define

Won(X):= colim Spec(Wp,(R)) and Wg(X)=-colimWg,(X).
Spec(R)—X n

If X = Spec(R) is affine then
Wo(Spec(R)) = colim Spec(Wo »(R))

is identified with the ind-affine scheme corresponding to the pro-ring “lim W¢ ,,(R)”.
n

1.2.3. §-structures on sheaves. The functor W on Shy defines a monad (the vari-
ance has changed) and a d-structure on sheaf is an action of this monad. We write
Shs,, for the category of d-sheaves (that is sheaves equipped with a d-structure) and
note that the forgetful functor to the category of sheaves commutes limits, disjoint
unions and filtered colimits. Moreover, X — Wy (X) is (by definition) left adjoint
to the forgetful functor.

Of course, any d-sheaf X has a lift of g-power Frobenius ¢ : X — X.

1.2.4. Arithmetic jet (pre)sheaves. The forgetful functor from d-sheaves to all sheaves
wants to have a right adjoint given by the Jet space:

Jo(X) :=lmX o We .

However Jo(X) is not in general an fpqc sheaf as the functors We ,, are not contin-
uous for the fpqc topology (although they are continuous for the étale topology).
Whenever the presheaf Jo(X) defined above is a sheaf, the adjunction property
holds — in particular for X a scheme (as in this case each presheaf Jo ,,(X) := XoJp 5,
is itself a scheme). In general, we will see later that after ‘perfecting’ the functor
Jo becomes continuous.

1.2.5. p-adic sheaves. The terminal object Spec(O) in Shy has a natural subsheaf
Spf(0O) := colim Spec(O0/p’) C Spec(0O)
K3

whose value on an O-algebra R is the singleton if p is nilpotent in R and empty
otherwise. A sheaf X € Shg is said to be p-adic if its structure map X — Spec(O)
factors through Spf(0) C Spec(0). We will write Shf) for this category.
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1.2.6. p-adic §-sheaves. We now arrive at our final destination which is the category
of p-adic d-sheaves. Note that Sh'(’9 is stable under the functor W as if p is nilpotent
in R it is also nilpotent in W,, o(R) so that Spec(Wy ,,(R)) is a p-adic sheaf and
therefore so is We(Spec(R)). We denote by Shs, the category of p-adic sheaves
equipped with a J-structure and compatible morphisms. It will be useful later to
note that if p is nilpotent in R then the morphisms W ,, (Spec(R)) — W (Spec(R))
are representable by nilpotent immersions.

1.3. Stacks and quasi-coherent modules.

1.3.1. ‘Algebraic’ stacks. A morphism of schemes f: X — Y is said to be fpqc if it
is faithfully flat and a covering morphism for the fpqc topology.

A stack 2 is said to be algebraic if there exists a morphism X — £  from a
scheme X which is representable by fpqc morphisms. A morphism f : 2~ — &
of stacks is said to be algebraic if for all affine schemes Spec(R) — # the stack
Z x g Spec(R) is algebraic. Algebraic morphisms are preserved under composition,
base change and satisfy fpqc descent.

1.3.2. Quasi-coherent modules. If X is a sheaf? (p-adic if you like, but for this it is
not important) then a quasi-coherent module .# on X is defined to be the following
data: for all maps f : Spec(R) — X, we are given an R-module

M
and for all morphisms h : Spec(R’) — Spec(R) an isomorphism
(M) — Mo

satisfying the usual compatibility conditions, where the first h* denotes the usual
base change induced by h : R — R/. We denote by QCoh(X) the category of quasi-
coherent modules on X. We write Ox for the quasi-coherent module (Ox)s = R.
Of course, X — QCoh(X) is just the right Kan extension of its restriction to affine
schemes.

When X = Spec(R), or more generally any scheme, QCoh(X) agrees with the
usual notion. In general, if we can write X = colim; X; then

QCoh(X) = lim QCoh(X;)

whence the observation that QCoh(X) may in general not be abelian. In particular,
if X = Spf(0) then QCoh(X) is equivalent to the category of p-adically complete
O-modules, which is not abelian. If we can write X = colim; X; in such a way
that each QCoh(X;) is abelian and the transition maps induce exact functors on
quasi-coherent modules e.g. for a scheme and an open cover by affines, but it works
more generally.

If f: X — Y is a morphism of sheaves and . is a quasi-coherent module on Y
then f*(.#) is defined by setting, for any h : Spec(R) — X

f*(./ﬂ)h = %foh.

21t could also be a presheaf - the definition never uses that X is a sheaf. The same definition
also works for stacks or prestacks, with the usual modifications: if 2" is a (pre)stack then we ask
for functor functors 2 (R) — Mod(R) satisfying various compatibilities (rather than just maps
X(R) — Mod(R) for presheaves X).
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We say that .# is a vector bundle if f*(.#) is a finite projective R-module for
all f: Spec(R) — X and that .# and a line bundle if it is finite projective of rank
one.

An important case is when X = colim; Spec(R;) is an ind-affine scheme. Then a
line bundle . on X is by definition a compatible collection L; of rank one projective
R;-modules. If moreover the transition maps R; — R; have kernels generated
by nilpotent elements, we see that as soon as one L; is free all of them are and
% =5 Ox. In particular, any affine open cover of one Spec(R;) induces unique
compatible open covers of all the Spec(R;). Thus in this case, there is a relative
affine open cover of X with the property that the pull-back of .Z to this open cover
is free.

Given a quasi-coherent module .#Z on X we can turn it into a ‘physical’ object
over X, that is an actual sheaf over X, as follows. We define V(.#) to be the sheaf
over X whose set of sections over a sheaf f:Y — X is

V(A)(Y) := Homqcony) (O, [ (A)).
In this way, we see that V(0x) — AL. That is
V(0x)(Y) = Homqeon(v) (O, [*(Ox)) = Homx (Y, A).

More generally, a quasi-coherent module & on X is a vector bundle if and only if
V(&) is locally® isomorphic to V(0%) = A%.

2. PRISMS

2.1. Distinguished elements and quasi-ideals.

2.1.1. Distinguished elements. Let R be an O in which p is nilpotent, i.e. R €
Algh), and consider the Witt vectors W(R). We say than an element £ € W(R) is
distinguished if one of the following equivalent conditions hold:

(i) € =[&] + Vx[&] + -+ with & € R nilpotent and & € R invertible,
(ii) € = [€o] + Vx(w) with & € R nilpotent and w € W(R) a unit,
(iii) The image of £ in W,,(R) is nilpotent for each n > 1 and §(¢) € W(R) is a
unit.

The fundamental example of a distinguished element is 7 € W(R).

2.1.2. Proposition (Properties of distinguished elements). Let R be an O/p”-
algebra and let £ € W(R).
(i) & s distinguished if and only if (&) is distinguished.
(ii) If € is distinguished and u € W(R) then &' = u is distinguished if and
only if u is a unit.
(iii) If €7" = 0 mod VW(R) for some n > 0, then ¢" (&) = ur where u is a
unit.
(iv) If € is distinguished, €7 = 0 mod VW(R) for some n >0 and ué = ¢ then
(pn+r+1(u) =1.
(v) If f : R = R’ is a homomorphism and £ € W(R) is distinguished then
W(f)(&) € WR') is distinguished.

3Here locally is meant in the most general sense: after base change along an epimorphism
X’ — X of fpqc sheaves.
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Proof. (i) As p(§) = €9+ 7w6(€) and 7 is topologically nilpotent, we see that & is
topologically nilpotent if and only if ¢(€) is topologically nilpotent. Similarly,
5(p(&)) = ¢(6(£)) = 6(&)* +m(6(6(¢)))
so that d(¢(€)) is a unit if and only if §(§) is a unit.
(ii) If £ is distinguished and v € W(R) is a unit then & = u€ is topologically
nilpotent and
6(ug) = u6(§) + ¢(£)d(u)
is a unit as u?0(€) is a unit and p(€) is topologically nilpotent.
Conversely, if u € W(R) is any element such that & = u€ is distinguished then
the same equality
5(u€) = w5 (€) + p(€)5(u)
shows that u? and hence v must be a unit.
(iii) We have & = [&] 4+ Vi (w) where w is a unit and £€¢° = 0 mod VW(R) is
equivalent to gg” = 0 in R. Therefore,

P = ¢ (&) + " (Va(w)) = (6 4 1" (w) = e (w).

(iv) By (iii) we are reduced to showing that if umr = 7 then ¢"(u) = 1. If r = 1,

so that m = 0 in R, then p o V; =V 0 ¢ = 7 so that
0=p(u—1)=¢(Vr(u—1)) = Va(p(u—1)).

As V. is injective this implies that ¢(u) = 1.

In general, this shows that p(u—1) € W(pR) = ker(W(R) — W(R/p)). However,
we have (W (p'R)) C W(p*T!R) so that if p” = 0 we get:

¢ (u—1) = ¢" " H(p(u—1)) € " H(W(pR)) C W(p'R) = 0.
(v) Clear. O

2.1.3. Distinguished quasi-ideals over Witt vectors. Write S = Spec(R). A distin-
guished quasi-ideal on W(S) is a line bundle .# on W(S) equipped with a map

f I — ﬁW(S)
such that on one (or any) open cover? over which .# = Ow(s) 1s trivialised,
§ € Hom(Ows), Ows)) = W(R)
is distinguished. A morphism of distinguished quasi-ideals
u : (f I — ﬁW(S)) — (f/ I = ﬁW(S))
is any morphism u : % — ¢’ such that £ ou = &.
If S’ = Spec(R/) and f : S’ — S is a morphism then we write
P15 = Owis) = (F() : F1(F) > Ows)
which is again a distinguished quasi-ideal by (v) of (2.1.2).

Given a distinguished quasi-ideal (£ : .# — Owy(g)) and writing i : S — W(S)
for the natural closed immersion let us set i*(.#) = % and & = i*(§). Then we

4Such open covers exist because the transition maps Spec(Wy(R)) — Spec(Wni1(R)) are
nilpotent immersions. Any open subscheme of any Spec(R) lifts uniquely to a compatible family
of open subschemes of the Spec(W,(R)) and hence to a (representable) open subscheme of the
colimit W(Spec(R)). Indeed, if U C Spec(R) is an open immersion then W(U) — W(Spec(R))
is also an open immersion. Similarly, a line bundle on W(Spec(R)) is trivial if and only if its
restriction to Spec(R) is trivial as trivialisations can always be lifted along nilpotent immersions.
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have a morphism of line bundles (& : £ — Og) over S. As (§ : & — Owyg)) is

distinguished it follows that f? " is the zero map for some n > 0.

2.1.4. Remark. A distinguished quasi-ideal on W(S) for S = Spec(R) with p nilpo-
tent in R is the same as a projective rank one W(R)-module I, together with a
map £ : I — W(R) such that, Zariski locally on R, ¢ sends a generator of I to a
distinguished element of W(R).

2.1.5. Principal distinguished quasi-ideals. If £ € W(R) = Hom(Ow sy, Ow(s)) is a
distinguished element then (£ : Oy (g) — Ows)) is a distinguished quasi-ideal and
a distinguished quasi-ideal is said to be principal and generated by £ € W(R) if it
is isomorphic to one of this form.

2.1.6. Proposition (Properties of distinguished quasi-ideals over Witt vectors).
Let S = Spec(R) where p" =0 in R.
(i) Every morphism of distinguished quasi-ideals over W(S) is an isomorphism.
(i) If (£ : & — Ows)) is a distinguished quasi-ideal then so is (p*(§) :
0" (S — Ows)), and moreover it is principal.
(iii) If (£ : F — Owys)) is a distinguished quasi-ideal and f?qn = 0 for some
n > 0 then there exists an isomorphism

(ip 10 ® Ows) = Ows)) —> @" T (€ I = Owes))-

(iv) If u is an automorphism of a distingiushed quasi-ideal (§ : & — Ows))
with the property that 589qn =0 for some n > 1, then " 1*(u) = id.

Proof. (i) It suffices to work locally and so we may assume that .# is principal in
which case it follows (ii) of (2.1.2).

(ii) The line bundle .# and the morphism & : % — Oyys) correspond to a
compatible collection of rank one projective W,,(R)-modules I,, and compatible
maps &, : I, = W, (R) and the claim is that the compatible collection ¢*(I,,11) of
W, (R)-modules is free.

First, we define for each n > 1 a map

Lit1 = Wi(R) /& (L) 1 i 02 (€n+1(7)) mod &, (I,).

We claim that this map is additive and ¢-linear. In proving this, for clarity we
will denote the reduction maps W,,+1(R) - W,(R) and I,,41 — L, by 2 — Z. By
definition we have: &,.1(i) = &,(3).

Now, for additivity we have:

Or(Cny1(i+7)) = 6x(&ng1(d) +E&nr1())

= Sel6rn () + 60 + 3 £ (1) e O

= Gl )+ 0,6 + 3 2 ()66,

k=1

= 5ﬁ(§n+1(i)) + 5# (fn—‘rl(])) mod fn (In)
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For the semi-linearity we have:

Or (Ent1(wi)) = Or(wEny1(2))
= ()3 (Ens1(8)) + 5 (0)Ena ()
= p(w)dr(Ent1(4)) + dn(w)€n(7)
(W) (§ng1(7)) mod &, (1)

Therefore, we have defined a ¢-linear map I,11 — p ® W, (R)/&,(1,) which
induces a linear map

‘P*(InJrl) ®Wn,(R) Wn(R)/(fn(In)) = PR Wn(R)/gn(In)

This is a homomorphism of rank one projective W, (R)-modules and it is an isomor-
phism as it comes from a distinguished quasi-ideal: locally I,,+1 admits a generator
1 with the property that ¢, (&,+1(¢)) is invertible in W,,(R).

Therefore, ¢*(I,,+1) is free and as W,,11(R) — W, (R) is surjective with nilpotent
kernel, it follows that we can compatibly lift generators and hence ¢* (%) is free.

(iii) By induction we are reduced to the case n = 0. Asin (i) let £ : .7 = Ows)
correspond to the compatible system &, : I, = W,,(R). As & = 0 it follows that
&m factors through V,W,,_1(R) C W,,(R) and so we can write each &,, uniquely
as Vp o By, where B, : I, =& W,,_1(R) is a p-linear map and by uniqueness we
have B = Bm—1.

We then see that ¢* (&) : " (Im) = Wp—1(R) is the linearisation of the ¢-linear
map 70 : L, = Wy—1(R). The linearisations of the 3, now define a compatible
collection of maps

¢ (L) "™ p @ W1 (R)

such that ¢*(&m,) = ip o (T ® Bym). Therefore, we have a morphism of distinguished
quasi-ideals

(*(&) : I = Ows)) = (ip 1 p @ Ows) = Owes))
which by (i) is an isomorphism.
(iv) Arguing locally this follows from (iv) of (2.1.2). O

2.2. Prisms and .

2.2.1. Distinguished quasi-ideals over general sheaves. Let X be a p-adic §-sheaf. A
distingiushed quasi-ideal over X is a morphism of line bundles (£ : & — Ox) such
that, for all rings R and all morphisms Spec(R) — X, the pull-back of ({ : .# — O%)
along the §-map W(Spec(R)) — X induced by adjunction is a distinguished quasi-
ideal in the sense of (2.1.3).

2.2.2. Prisms. A prism is a pair (X, (£ : £ — X)) where X is a p-adic J-sheaf and
(& :.# — X) is a distinguished quasi-ideal. A morphism of prisms

(fru): (X, (éx : Ix = X)) = (Y, (&y : I = Y))
consists a d-morphism f: X — Y and a morphism of distinguished quasi-ideals
u: f(Sy) = Ix.

Note that u is necessarily an isomorphism.
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2.2.3. Drinfeld’s stack ¥.. The R-points of the p-adic stack X are given by

Y(R) := {groupoid of distinguished quasi-ideals (£ : .# = Ow(spec(r)))}-
We denote by ¢y : ¥ — ¥ the morphism which on R-points is induced by pull-back
along the Frobenius W(Spec(R)) — W(Spec(R)).

2.2.4. ¥ in terms of distinguished elements. Write W for the affine group scheme
whose R-points is the ring of Witt vectors W(R) := W(R). Note that W is
isomorphic to the affine scheme Spec(0{t}).

Abusing notation we will also write W for W xgpec(0) Spf(0).

Now, let Wyt € W denote the subsheaf whose R-points are those £ € W(R) =
W(R) which are distinguished. Thus, we have

W aist = colim Spec(O[t, 6°1 (£)FL,6°%(t), .. ]/ (p™, t™)).
n,m
We write W* C W for the subsheaf whose set of R-points is the group of units
in W(R) = W(R) (Note, can be shown that W* — W is an inverse limit of open
immersions).
Then, W* acts on Wis; via multiplication and the map
Wdist -2
sending a distinguished element to the associated principal distinguished quasi-ideal
identifies ¥ with the stack-theoretic quotient
Waist /W™ 5 3.
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