NOTES ON PRISMS (DRAFT)

LANCE GURNEY

April 26, 2021

Contents

Introduction	2
1. Witt vectors and δ -structures	2
1.1. Witt vectors and δ -structures	2
1.2. δ -structures on sheaves	5
1.3. Stacks and quasi-coherent modules	7
2. Prisms	8
2.1. Distinguished elements and quasi-ideals	8
2.2. Prisms and Σ	11
References	12

LANCE GURNEY

INTRODUCTION

These notes will contain an overview of various things prismatic relative to a general complete discrete valuation ring with finite residue field.

The theory here can be found in the case of \mathbf{Z}_p in Bhatt–Scholze [BS19], or Drinfeld [Dri21] and [Dri]. Of course, any errors are my own.

1. Witt vectors and δ -structures

For now and forever we fix a complete discrete valuation ring O with maximal ideal \mathfrak{p} , finite residue field $k = \mathfrak{O}/\mathfrak{p}$ of cardinality q, a power of a prime p. When convenient we also fix a generator $\pi \in \mathcal{O}$ of \mathfrak{p} . We write $Alg_{\mathcal{O}}$ for the category of O-algebras and $\operatorname{Alg}_{O}^{\mathfrak{p}}$ for the category of O-algebras in which \mathfrak{p} is nilpotent.

1.1. Witt vectors and δ -structures.

1.1.1. Definition. Let A be an O-algebra. A δ -structure on A is a map $\delta_{\pi} : A \to A$ satisfying the following identities:

- (1) $\delta_{\pi}(x+y) = \delta_{\pi}(x) + \delta_{\pi}(y) \sum_{i=1}^{q-1} \frac{1}{\pi} {q \choose i} x^{q-i} y^{i}.$ (2) $\delta_{\pi}(xy) = x^{p} \delta_{\pi}(y) + \delta_{\pi}(x) y^{q} + \pi \delta_{\pi}(x) \delta_{\pi}(y).$ (3) $\delta_{\pi}(a) = (a a^{q})/\pi \text{ for } a \in \mathbb{O}.$

This does not depend on the uniformiser π chosen in the sense that if $\pi' = \lambda \pi$ for $\lambda \in \mathbb{O}^{\times}$ then a map δ_{π} satisfies the identities above if and only if the map $\delta_{\pi'} :=$ $\lambda^{-1}\delta_{\pi}$ satisfies the analogous identities with π replaced everywhere by $\lambda \pi = \pi'$. In any case, the purpose of this structure is realised when we define the map

$$\varphi : \mathbf{A} \to \mathbf{A} : x \mapsto \varphi(x) := x^q + \pi \delta_\pi(x)$$

which the reader readily checks is an O-algebra homomorphism $\varphi : A \to A$ lifting the q-power Frobenius modulo \mathfrak{p} . A morphism of δ -rings is any O-algebra homomorphism commuting with the δ maps and Alg_{δ_0} denotes the category of δ -rings.

1.1.2. The torsion free case. If A is p-torsion free then δ -structures on A are in bijective correspondence with O-algebra homomorphisms $\varphi : A \to A$ lifting the q-power Frobenius via

$$\varphi \mapsto \delta : x \mapsto \frac{\varphi(x) - x^q}{\pi}$$

If A is not \mathfrak{p} -torsion free then it really is extra structure but, as explained by Bhatt-Scholze, δ -structures are really 'derived' Frobenius lifts.

1.1.3. Witt vectors and arithmetic jets. The forgetful functor $Alg_{\delta_{\Omega}} \rightarrow Alg_{\Omega}$ admits both a left and a right adjoint. The right adjoint is given by the O-Witt vectors $W_{\mathcal{O}}$ and the left adjoint by the O-arithmetic Jet ring $J_{\mathcal{O}}$.

Composed with the forgetful functor these adjoints give a comonad and monad respectively on the category of O-algebras and a coaction of W_O (resp. action of J_O) on an O-algebra is the same as a δ_{O} -structure. The coaction map of $W_{O}(R)$ on itself is denoted $w: W_{\mathcal{O}}(\mathbf{R}) \to W_{\mathcal{O}}(W_{\mathcal{O}}(\mathbf{R}))$ and called the Artin-Hasse exponential.

¹Here $\frac{1}{\pi} \begin{pmatrix} q \\ i \end{pmatrix}$ for $1 \leq i \leq q-1$ denotes the unique element in \mathcal{O} which multiplied by π gives $\begin{pmatrix} q \\ i \end{pmatrix}$.

1.1.4. Coordinates on the Witt vectors. The Witt vector functor $W_{\mathcal{O}}$ is co-represented by $J_{\mathcal{O}}(\mathcal{O}[t]) = \mathcal{O}\{t\}$ which is, by definition, the free δ -ring on a single generator. As an O-algebra, it is a polynomial algebra on countably many generators given by the elements $\delta_i := \delta^{\circ i}(t) \in \mathcal{O}\{t\}$:

$$\mathbb{O}\{t\} \xrightarrow{\sim} \mathbb{O}[\delta_0, \delta_1, \ldots].$$

These generators induce the 'Joyal coordinates' on the Witt vectors:

$$W_{\mathcal{O}}(\mathbf{R}) = \operatorname{Hom}_{\mathcal{O}}(\mathcal{O}\{t\}, \mathbf{R}) \xrightarrow{\sim} \prod_{i=0}^{\infty} \mathbf{R} : f \mapsto (f(\delta_0), f(\delta_1), \ldots)$$

The O-algebra structure on the infinite product $\prod_{i=0}^{\infty} \mathbf{R}$ induced by the isomorphism above is the unique functorial one such that:

(i) The projection:

$$\prod_{n=0}^{\infty} \mathbf{R} \to \mathbf{R} : (\delta_0, \delta_1, \delta_2 \dots) \to \delta_0$$

is an O-algebra homomorphism.

(ii) The map

$$\prod_{i=0}^{\infty} \mathbf{R} \to \prod_{i=0}^{\infty} \mathbf{R} : (\delta_0, \delta_1, \ldots) \mapsto (\delta_0^q + \pi \delta_1, \delta_1^q + \pi \delta_2, \ldots)$$

is an 0-algebra homomorphism. This homomorphism corresponds to the Frobenius φ on the Witt vectors.

There is a second set of coordinates on $W_{\mathcal{O}}(\mathbf{R})$ called the 'Witt coordinates'. If we denote them by $d_i \in \mathcal{O}\{t\}$ for $i = 0, 1, \ldots$ then $d_0 = \delta_0 = t$ and the rest are defined inductively to be the unique elements of $\mathcal{O}\{t\}$ such that $\varphi^{\circ n}(t) \in \mathcal{O}\{t\}$ is given by the formula

$$\varphi^{\circ n}(t) = \sum_{i=0}^{n} \pi^{i} d_{i}^{q^{n-i}} = d_{0}^{q^{n}} + \pi d_{1}^{q^{n-1}} + \pi^{2} d_{2}^{q^{n-2}} + \dots + \pi^{n} d_{n}.$$

This induces a second isomorphism $W_{\mathcal{O}}(\mathbf{R}) \xrightarrow{\sim} \prod_{i=0}^{\infty} \mathbf{R}$ and the resulting \mathcal{O} -algebra structure on $\prod_{i=0}^{\infty} \mathbf{R}$ is the unique functorial one such that the maps

$$g_n: \prod_{i=0}^{\infty} \mathbf{R} \to \mathbf{R}: (d_0, d_1, d_2 \ldots) \to \sum_{i=0}^n \pi^i d_i^{q^{n-i}}$$

are O-algebra homomorphisms for $i \ge 0$. A coordinate free description of these maps

$$g_n: W_{\mathcal{O}}(\mathbf{R}) \to \mathbf{R}$$

is iterates of the Frobenius φ^n composed with the canonical projection $W_{\mathcal{O}}(R) \to R$ and are called the ghost maps.

1.1.5. Teichmüller map. The O-algebra O[t] has a unique δ -structure with Frobenius lift $\varphi(t) = t^q$. By adjunction we find a unique δ -map

$$\mathbb{O}\{t\} \to \mathbb{O}[t]$$

and the induced map

$$[-]: \mathbf{R} \to \mathbf{W}_{\mathcal{O}}(\mathbf{R})$$

is the Teichmüller map. It is the unique multiplicative (but in general non-additive) section of the projection $W_{\mathcal{O}}(R) \to R$.

1.1.6. Verschiebung. The kernel of the projection $W_{\mathbb{Q}}(R) \to R$ is denoted by VW(R) and called the Verschiebung ideal. The restriction of the Frobenius to VW(R) has image contained in pW(R) and it can be lifted to a unique functorial isomorphism

$$\varphi: \mathrm{VW}(\mathrm{R}) \xrightarrow{\sim} \mathfrak{p} \otimes \mathrm{W}(\mathrm{R}).$$

The inverse of this isomorphism is called the Verschiebung map

$$V: \mathfrak{p} \otimes W(R) \xrightarrow{\sim} VW(R) \subset W(R).$$

We denote by V_{π} the map $V_{\pi}(w) = V(\pi \otimes w)$ which in terms of the Witt coordinates is given by

$$V_{\pi}(d_0, d_1, \ldots) = (0, d_0, d_1, \ldots).$$

The Verschiebung (so normalised) satisfies the relations:

(i) $\varphi(\mathbf{V}_{\pi}(w)) = \pi w$,

(ii)
$$V_{\pi}(\varphi(w)w') = wV_{\pi}(w)$$

(ii) $V_{\pi}(\varphi(w)w') = wV_{\pi}(w'),$ (iii) $V_{\pi}(w)V_{\pi}(w') = \pi V_{\pi}(ww').$

1.1.7. Finite length Witt vectors. The image of the nth iterate V_{π}^{n} of the Verschiebung is denoted by $V^n W(R)$ and called the *n*th Verschiebung ideal. The quotient $W_{\mathcal{O},n}(\mathbf{R}) := W_{\mathcal{O}}(\mathbf{R})/V^n W_{\mathcal{O}}(\mathbf{R})$ is the ring of length n Witt vectors and we have

$$W_{\mathcal{O},n}(\mathbf{R}) \xrightarrow{\sim} \lim_{n} W_{\mathcal{O},n}(\mathbf{R}).$$

This equips $W_{\mathcal{O}}(R)$ with a natural topology, or better, a natural pro-ring structure. The maps δ , φ , V_{π} and w are compatible with this structure and induce maps

$$\delta, \varphi: W_{\mathcal{O},n+1}(\mathbf{R}) \to W_{\mathcal{O},n}(\mathbf{R}) \qquad V^i_{\pi}: W_{\mathcal{O},n}(\mathbf{R}) \to W_{\mathcal{O},n+i}(\mathbf{R})$$

and

$$w: W_{\mathcal{O},n+m}(\mathbf{R}) \to W_{\mathcal{O},n}(W_{\mathcal{O},m}(\mathbf{R}))$$

and then short exact sequences

$$0 \to W_{\mathcal{O},n}(\mathbf{R}) \xrightarrow{\mathbf{V}_{\pi}^{i}} W_{\mathcal{O},n+i}(\mathbf{R}) \to W_{\mathcal{O},i}(\mathbf{R}) \to 0$$

for all $0 \le i \le n \le \infty$ (where $i, n = \infty$ means the infinite length Witt vectors).

1.1.8. Witt vectors as series. It follows that using the Teichmüller and the Verschiebung we can uniquely write any Witt vector $w \in W_{\mathcal{O}}(\mathbf{R})$ as an infinite series

$$w = \sum_{i=0}^{\infty} \mathcal{V}^i_{\pi}[r_i]$$

with $r_0, r_1, \ldots \in \mathbb{R}$. The induced coordinates agree with the Witt coordinates defined earlier.

1.1.9. Witt vectors, nilpotent ideals and étale maps. If $\mathbf{R} \to \mathbf{R}'$ is an étale homomorphism then for all finite n and all homomorphisms $\mathbf{R} \to \mathbf{R}''$, the natural map

$$W_{\mathcal{O},n}(\mathbf{R}') \otimes_{W_{\mathcal{O},n}(\mathbf{R})} W_{\mathcal{O},n}(\mathbf{R}'') \xrightarrow{\sim} W_{\mathcal{O},n}(\mathbf{R}' \otimes_{\mathbf{R}} \mathbf{R}'')$$

is an isomorphism.

For $1 \leq n \leq \infty$ and $I \subset R$ an ideal we write $W_{\mathcal{O},n}(I) = \ker(W_{\mathcal{O},n}(R) \rightarrow W_{\mathcal{O},n}(R))$. Then:

- (i) If I is nilpotent and $1 \le n < \infty$ then $W_{\mathcal{O},n}(I)$ is also nilpotent.
- (ii) If \mathfrak{p} is nilpotent in R then $V^i_{\pi}W_{\mathcal{O},n}(R) \subset W_{\mathcal{O},n+i}(R)$ is nilpotent, as is $\mathfrak{p}W_{\mathcal{O},n}(R)$.
- (iii) We have $\varphi(W_{\mathcal{O},n}(\mathbf{I})) \subset W_{\mathcal{O},n-1}(\mathbf{I}^q + \pi \mathbf{I})$ (use Joyal coordinates).

1.1.10. Witt vectors of k-algebras. If R is an $\mathcal{O}/\mathfrak{p} = k$ -algebra then the Witt vector Frobenius φ coincides with $W_{\mathcal{O}}(\operatorname{Fr}^{q})$. This implies that the Verschiebung and Frobenius actually commute

$$\varphi(\mathbf{V}_{\pi}(w)) = \mathbf{V}_{\pi}(\varphi(w)) = \pi w.$$

In fact, this is equivalent to R being a k-algebra. In particular, if the Frobenius is an isomorphism on R, it is on $W_{\mathcal{O}}(R)$ and $V_{\pi}^{i} = \pi^{i}\varphi^{-i}$. In this case, every element of $W_{\mathcal{O}}(R)$ can be written uniquely as a 'power series in π ':

$$w = \sum_{i=0}^{\infty} [r_i] \pi^i.$$

Note that this implies that $W_{\mathcal{O}}(\mathbf{R})$ is π -torsion free.

1.1.11. The case $\mathcal{O} = \mathbf{F}_q[[\pi]]$. If $\mathcal{O} = \mathbf{F}_q[[\pi]]$ is equi-characteristic and R is an $\mathbf{F}_q[[\pi]]$ -algebra then the Teichmüller map

$$[-]: \mathbf{R} \to \mathbf{W}_{\mathbf{F}_q[[\pi]]}(\mathbf{R})$$

is an \mathbf{F}_q -linear ring homomorphism, that is it is not only multiplicative but also additive. It is not an $\mathbf{F}_q[[\pi]]$ -algebra homomorphism, as $[\pi] \neq \pi$ in $W_{\mathbf{F}_q[[\pi]]}(\mathbf{R})$. However, there is an induced $\mathbf{F}_q[[\pi]]$ -linear map

$$\mathbf{R} \otimes_{\mathbf{F}_q} \mathbf{F}_q[[\pi]] \to \mathbf{W}_{\mathbf{F}_q[[\pi]]}(\mathbf{R}).$$

If R is π -adically complete (the case we are mainly interested in) then this map extends by continuity to a map

$$\mathbf{R}[[\pi]] \to \mathbf{W}_{\mathbf{F}_q[[\pi]]}(\mathbf{R})$$

which is in general is neither surjective nor injective. However, if R is perfect (i.e. the q-power Frobenius is an isomorphism) then it is an isomorphism. Moreover, for any R, $R[[\pi]]$ has a unique δ -structure, given by $\delta(r) = 0$ for $r \in \mathbb{R} \subset R[[\pi]]$, for which the $R[[z]] \to W_{\mathbf{F}_{q}[[\pi]]}(\mathbb{R})$ is a δ -homomorphism.

1.2. δ -structures on sheaves.

1.2.1. Pro-rings and ind-affine sheaves. Let $Alg_{\mathcal{O}}^{pro}$ denote the category of pro- \mathcal{O} -algebras. We denote a general object of this category by

$$\lim_{i\in\mathbf{I}}\mathbf{R}_i".$$

Then the Yoneda embedding $R \mapsto \operatorname{Spec}(R)$ extends to the category of pro-O-algebras by

$$\lim_{i \in \mathbf{I}} \mathbf{R}_i \to \operatorname{colim}_{i \in \mathbf{I}} \operatorname{Spec}(\mathbf{R}_i)$$

and this functor is fully faithful. The essential image of this functor is the category of ind-affine sheaves $\operatorname{Aff}_{\mathcal{O}}^{\operatorname{ind}}$.

1.2.2. Witt vectors of sheaves. Given a sheaf X, writing it as its 'Yoneda colimit'

$$X \xrightarrow{\sim} \underset{\operatorname{Spec}(R) \to X}{\operatorname{Spec}(R)} \operatorname{Spec}(R)$$

we define

$$W_{\mathfrak{O},n}(\mathbf{X}) := \operatornamewithlimits{colim}_{\operatorname{Spec}(\mathbf{R}) \to \mathbf{X}} \operatorname{Spec}(W_{\mathfrak{O},n}(\mathbf{R})) \quad \text{ and } \quad W_{\mathfrak{O}}(\mathbf{X}) = \operatornamewithlimits{colim}_{n} W_{\mathfrak{O},n}(\mathbf{X}).$$

If X = Spec(R) is affine then

$$W_{\mathcal{O}}(\operatorname{Spec}(\mathbf{R})) = \operatorname{colim}_{n} \operatorname{Spec}(W_{\mathcal{O},n}(\mathbf{R}))$$

is identified with the ind-affine scheme corresponding to the pro-ring " $\lim_{n \to \infty} W_{\mathcal{O},n}(\mathbf{R})$ ".

1.2.3. δ -structures on sheaves. The functor $W_{\mathbb{O}}$ on $Sh_{\mathbb{O}}$ defines a monad (the variance has changed) and a δ -structure on sheaf is an action of this monad. We write $Sh_{\delta_{\mathbb{O}}}$ for the category of δ -sheaves (that is sheaves equipped with a δ -structure) and note that the forgetful functor to the category of sheaves commutes limits, disjoint unions and filtered colimits. Moreover, $X \mapsto W_{\mathbb{O}}(X)$ is (by definition) left adjoint to the forgetful functor.

Of course, any δ -sheaf X has a lift of q-power Frobenius $\varphi : X \to X$.

1.2.4. Arithmetic jet (pre)sheaves. The forgetful functor from δ -sheaves to all sheaves wants to have a right adjoint given by the Jet space:

$$\mathbf{J}_{\mathcal{O}}(\mathbf{X}) := \lim_{n} \mathbf{X} \circ \mathbf{W}_{\mathcal{O},n}.$$

However $J_{\mathcal{O}}(X)$ is not in general an fpqc sheaf as the functors $W_{\mathcal{O},n}$ are not continuous for the fpqc topology (although they are continuous for the étale topology). Whenever the presheaf $J_{\mathcal{O}}(X)$ defined above *is* a sheaf, the adjunction property holds – in particular for X a scheme (as in this case each presheaf $J_{\mathcal{O},n}(X) := X \circ J_{\mathcal{O},n}$ is itself a scheme). In general, we will see later that after 'perfecting' the functor $J_{\mathcal{O}}$ becomes continuous.

1.2.5. \mathfrak{p} -adic sheaves. The terminal object $\operatorname{Spec}(\mathbb{O})$ in $\operatorname{Sh}_{\mathbb{O}}$ has a natural subsheaf

$$\operatorname{Spf}(\mathcal{O}) := \operatorname{colim} \operatorname{Spec}(\mathcal{O}/\mathfrak{p}^i) \subset \operatorname{Spec}(\mathcal{O})$$

whose value on an \mathcal{O} -algebra R is the singleton if \mathfrak{p} is nilpotent in R and empty otherwise. A sheaf $X \in Sh_{\mathcal{O}}$ is said to be \mathfrak{p} -adic if its structure map $X \to Spec(\mathcal{O})$ factors through $Spf(\mathcal{O}) \subset Spec(\mathcal{O})$. We will write $Sh_{\mathcal{O}}^{\mathfrak{p}}$ for this category.

1.2.6. \mathfrak{p} -adic δ -sheaves. We now arrive at our final destination which is the category of \mathfrak{p} -adic δ -sheaves. Note that $\mathrm{Sh}^{\mathfrak{p}}_{\mathbb{O}}$ is stable under the functor $W_{\mathbb{O}}$ as if \mathfrak{p} is nilpotent in R it is also nilpotent in $W_{n,\mathbb{O}}(\mathbb{R})$ so that $\mathrm{Spec}(W_{\mathbb{O},n}(\mathbb{R}))$ is a \mathfrak{p} -adic sheaf and therefore so is $W_{\mathbb{O}}(\mathrm{Spec}(\mathbb{R}))$. We denote by $\mathrm{Sh}_{\delta_{\mathbb{O}}}$ the category of \mathfrak{p} -adic sheaves equipped with a δ -structure and compatible morphisms. It will be useful later to note that if \mathfrak{p} is nilpotent in R then the morphisms $W_{\mathbb{O},n}(\mathrm{Spec}(\mathbb{R})) \to W_{\mathbb{O}}(\mathrm{Spec}(\mathbb{R}))$ are representable by nilpotent immersions.

1.3. Stacks and quasi-coherent modules.

1.3.1. 'Algebraic' stacks. A morphism of schemes $f : X \to Y$ is said to be fpqc if it is faithfully flat and a covering morphism for the fpqc topology.

A stack \mathscr{X} is said to be algebraic if there exists a morphism $X \to \mathscr{X}$ from a scheme X which is representable by fpqc morphisms. A morphism $f : \mathscr{X} \to \mathscr{Y}$ of stacks is said to be algebraic if for all affine schemes $\operatorname{Spec}(\mathbb{R}) \to \mathscr{Y}$ the stack $\mathscr{X} \times \mathscr{Y} \operatorname{Spec}(\mathbb{R})$ is algebraic. Algebraic morphisms are preserved under composition, base change and satisfy fpqc descent.

1.3.2. Quasi-coherent modules. If X is a sheaf² (\mathfrak{p} -adic if you like, but for this it is not important) then a quasi-coherent module \mathscr{M} on X is defined to be the following data: for all maps $f : \operatorname{Spec}(\mathbb{R}) \to X$, we are given an \mathbb{R} -module

 \mathcal{M}_{f}

and for all morphisms $h: \operatorname{Spec}(\mathbf{R}') \to \operatorname{Spec}(\mathbf{R})$ an isomorphism

$$h^*(\mathscr{M}_f) \xrightarrow{\sim} \mathscr{M}_{f \circ h}$$

satisfying the usual compatibility conditions, where the first h^* denotes the usual base change induced by $h: \mathbb{R} \to \mathbb{R}'$. We denote by $\operatorname{QCoh}(X)$ the category of quasicoherent modules on X. We write \mathscr{O}_X for the quasi-coherent module $(\mathscr{O}_X)_f = \mathbb{R}$. Of course, $X \mapsto \operatorname{QCoh}(X)$ is just the right Kan extension of its restriction to affine schemes.

When X = Spec(R), or more generally any scheme, QCoh(X) agrees with the usual notion. In general, if we can write $X = \text{colim}_i X_i$ then

$$\operatorname{QCoh}(X) \xrightarrow{\sim} \lim \operatorname{QCoh}(X_i)$$

whence the observation that QCoh(X) may in general not be abelian. In particular, if X = Spf(O) then QCoh(X) is equivalent to the category of p-adically complete O-modules, which is not abelian. If we can write $X = colim_i X_i$ in such a way that each $QCoh(X_i)$ is abelian and the transition maps induce exact functors on quasi-coherent modules e.g. for a scheme and an open cover by affines, but it works more generally.

If $f : X \to Y$ is a morphism of sheaves and \mathscr{M} is a quasi-coherent module on Y then $f^*(\mathscr{M})$ is defined by setting, for any $h : \operatorname{Spec}(\mathbb{R}) \to \mathbb{X}$

$$f^*(\mathscr{M})_h := \mathscr{M}_{f \circ h}.$$

²It could also be a presheaf - the definition never uses that X is a sheaf. The same definition also works for stacks or prestacks, with the usual modifications: if \mathscr{X} is a (pre)stack then we ask for functor functors $\mathscr{X}(R) \to Mod(R)$ satisfying various compatibilities (rather than just maps $X(R) \to Mod(R)$ for presheaves X).

LANCE GURNEY

We say that \mathscr{M} is a vector bundle if $f^*(\mathscr{M})$ is a finite projective R-module for all $f : \operatorname{Spec}(\mathbb{R}) \to \mathbb{X}$ and that \mathscr{M} and a line bundle if it is finite projective of rank one.

An important case is when $X = \operatorname{colim}_i \operatorname{Spec}(\mathbf{R}_i)$ is an ind-affine scheme. Then a line bundle \mathscr{L} on X is by definition a compatible collection \mathcal{L}_i of rank one projective \mathcal{R}_i -modules. If moreover the transition maps $\mathcal{R}_i \to \mathcal{R}_j$ have kernels generated by nilpotent elements, we see that as soon as one \mathcal{L}_i is free all of them are and $\mathscr{L} \xrightarrow{\sim} \mathscr{O}_X$. In particular, any affine open cover of *one* $\operatorname{Spec}(\mathcal{R}_i)$ induces unique compatible open covers of *all* the $\operatorname{Spec}(\mathcal{R}_j)$. Thus in this case, there is a relative affine open cover of X with the property that the pull-back of \mathscr{L} to this open cover is free.

Given a quasi-coherent module \mathscr{M} on X we can turn it into a 'physical' object over X, that is an actual sheaf over X, as follows. We define $\mathbf{V}(\mathscr{M})$ to be the sheaf over X whose set of sections over a sheaf $f: Y \to X$ is

$$\mathbf{V}(\mathscr{M})(\mathbf{Y}) := \operatorname{Hom}_{\operatorname{QCoh}(\mathbf{Y})}(\mathscr{O}_{\mathbf{Y}}, f^*(\mathscr{M})).$$

In this way, we see that $\mathbf{V}(\mathscr{O}_{\mathbf{X}}) \xrightarrow{\sim} \mathbf{A}_{\mathbf{X}}^1$. That is

$$\mathbf{V}(\mathscr{O}_{\mathbf{X}})(\mathbf{Y}) = \operatorname{Hom}_{\operatorname{QCoh}(\mathbf{Y})}(\mathscr{O}_{\mathbf{Y}}, f^*(\mathscr{O}_{\mathbf{X}})) = \operatorname{Hom}_{\mathbf{X}}(\mathbf{Y}, \mathbf{A}_{\mathbf{X}}^1)$$

More generally, a quasi-coherent module \mathscr{E} on X is a vector bundle if and only if $\mathbf{V}(\mathscr{E})$ is locally³ isomorphic to $\mathbf{V}(\mathscr{O}_{X}^{n}) = \mathbf{A}_{X}^{n}$.

2. Prisms

2.1. Distinguished elements and quasi-ideals.

2.1.1. Distinguished elements. Let R be an O in which \mathfrak{p} is nilpotent, i.e. $R \in Alg_{\mathcal{O}}^{\mathfrak{p}}$, and consider the Witt vectors W(R). We say than an element $\xi \in W(R)$ is distinguished if one of the following equivalent conditions hold:

- (i) $\xi = [\xi_0] + V_{\pi}[\xi_1] + \cdots$ with $\xi_0 \in \mathbb{R}$ nilpotent and $\xi_1 \in \mathbb{R}$ invertible,
- (ii) $\xi = [\xi_0] + V_{\pi}(w)$ with $\xi_0 \in \mathbb{R}$ nilpotent and $w \in W(\mathbb{R})$ a unit,
- (iii) The image of ξ in $W_n(\mathbf{R})$ is nilpotent for each $n \ge 1$ and $\delta(\xi) \in W(\mathbf{R})$ is a unit.

The fundamental example of a distinguished element is $\pi \in W(\mathbb{R})$.

2.1.2. **Proposition** (Properties of distinguished elements). Let R be an $\mathcal{O}/\mathfrak{p}^r$ -algebra and let $\xi \in W(\mathbb{R})$.

- (i) ξ is distinguished if and only if $\varphi(\xi)$ is distinguished.
- (ii) If ξ is distinguished and $u \in W(\mathbb{R})$ then $\xi' := u\xi$ is distinguished if and only if u is a unit.
- (iii) If $\xi^{q^n} = 0 \mod VW(R)$ for some $n \ge 0$, then $\varphi^{n+1}(\xi) = u\pi$ where u is a unit.
- (iv) If ξ is distinguished, $\xi^{q^n} = 0 \mod VW(\mathbb{R})$ for some $n \ge 0$ and $u\xi = \xi$ then $\varphi^{n+r+1}(u) = 1$.
- (v) If $f : \mathbb{R} \to \mathbb{R}'$ is a homomorphism and $\xi \in W(\mathbb{R})$ is distinguished then $W(f)(\xi) \in W(\mathbb{R}')$ is distinguished.

8

³Here locally is meant in the most general sense: after base change along an epimorphism $X' \to X$ of fpqc sheaves.

Proof. (i) As $\varphi(\xi) = \xi^q + \pi \delta(\xi)$ and π is topologically nilpotent, we see that ξ is topologically nilpotent if and only if $\varphi(\xi)$ is topologically nilpotent. Similarly,

$$\delta(\varphi(\xi)) = \varphi(\delta(\xi)) = \delta(\xi)^q + \pi(\delta(\delta(\xi)))$$

so that $\delta(\varphi(\xi))$ is a unit if and only if $\delta(\xi)$ is a unit.

(ii) If ξ is distinguished and $u\in {\rm W}({\rm R})$ is a unit then $\xi'=u\xi$ is topologically nilpotent and

$$\delta(u\xi) = u^q \delta(\xi) + \varphi(\xi)\delta(u)$$

is a unit as $u^q \delta(\xi)$ is a unit and $\varphi(\xi)$ is topologically nilpotent.

Conversely, if $u \in W(\mathbb{R})$ is any element such that $\xi' = u\xi$ is distinguished then the same equality

$$\delta(u\xi) = u^q \delta(\xi) + \varphi(\xi)\delta(u)$$

shows that u^q and hence u must be a unit.

(iii) We have $\xi = [\xi_0] + V_{\pi}(w)$ where w is a unit and $\xi^{q^n} = 0 \mod VW(R)$ is equivalent to $\xi_0^{q^n} = 0$ in R. Therefore,

$$\varphi^{n+1}(\xi) = \varphi^{n+1}([\xi_0]) + \varphi^{n+1}(\mathbf{V}_{\pi}(w)) = [\xi_0^{q^n+1}] + \pi \varphi^n(w) = \pi \varphi^n(w).$$

(iv) By (iii) we are reduced to showing that if $u\pi = \pi$ then $\varphi^r(u) = 1$. If r = 1, so that $\pi = 0$ in R, then $\varphi \circ V_{\pi} = V_{\pi} \circ \varphi = \pi$ so that

$$0 = p(u - 1) = \varphi(V_{\pi}(u - 1)) = V_{\pi}(\varphi(u - 1)).$$

As V_{π} is injective this implies that $\varphi(u) = 1$.

In general, this shows that $\varphi(u-1) \in W(\mathfrak{p}R) = \ker(W(R) \to W(R/\mathfrak{p}))$. However, we have $\varphi(W(\mathfrak{p}^{i}R)) \subset W(\mathfrak{p}^{i+1}R)$ so that if $\mathfrak{p}^{r} = 0$ we get:

$$\varphi^{r}(u-1) = \varphi^{r-1}(\varphi(u-1)) \in \varphi^{r-1}(\mathbf{W}(\mathfrak{p}\mathbf{R})) \subset \mathbf{W}(\mathfrak{p}^{r}\mathbf{R}) = 0.$$

(v) Clear.

2.1.3. Distinguished quasi-ideals over Witt vectors. Write S = Spec(R). A distinguished quasi-ideal on W(S) is a line bundle \mathscr{I} on W(S) equipped with a map

 $\xi:\mathscr{I}\to\mathscr{O}_{\mathrm{W}(\mathrm{S})}$

such that on one (or any) open cover⁴ over which $\mathscr{I} \xrightarrow{\sim} \mathscr{O}_{W(S)}$ is trivialised,

 $\xi \in \operatorname{Hom}(\mathscr{O}_{W(S)}, \mathscr{O}_{W(S)}) = W(R)$

is distinguished. A morphism of distinguished quasi-ideals

$$\mu: (\xi: \mathscr{I} \to \mathscr{O}_{\mathrm{W}(\mathrm{S})}) \to (\xi': \mathscr{I} \to \mathscr{O}_{\mathrm{W}(\mathrm{S})})$$

is any morphism $u: \mathscr{I} \to \mathscr{I}'$ such that $\xi' \circ u = \xi$.

If S' = Spec(R') and $f: S' \to S$ is a morphism then we write

$$f^*(\xi:\mathscr{I}\to\mathscr{O}_{\mathrm{W}(\mathrm{S})})=(f^*(\xi):f^*(\mathscr{I})\to\mathscr{O}_{\mathrm{W}(\mathrm{S})})$$

which is again a distinguished quasi-ideal by (v) of (2.1.2).

Given a distinguished quasi-ideal $(\xi : \mathscr{I} \to \mathscr{O}_{W(S)})$ and writing $i : S \to W(S)$ for the natural closed immersion let us set $i^*(\mathscr{I}) = \mathscr{I}_0$ and $\xi_0 = i^*(\xi)$. Then we

⁴Such open covers exist because the transition maps $\operatorname{Spec}(W_n(R)) \to \operatorname{Spec}(W_{n+1}(R))$ are nilpotent immersions. Any open subscheme of any $\operatorname{Spec}(R)$ lifts uniquely to a compatible family of open subschemes of the $\operatorname{Spec}(W_n(R))$ and hence to a (representable) open subscheme of the colimit $W(\operatorname{Spec}(R))$. Indeed, if $U \subset \operatorname{Spec}(R)$ is an open immersion then $W(U) \to W(\operatorname{Spec}(R))$ is also an open immersion. Similarly, a line bundle on $W(\operatorname{Spec}(R))$ is trivial if and only if its restriction to $\operatorname{Spec}(R)$ is trivial as trivialisations can always be lifted along nilpotent immersions.

have a morphism of line bundles $(\xi_0 : \mathscr{I}_0 \to \mathscr{O}_S)$ over S. As $(\xi : \mathscr{I} \to \mathscr{O}_{W(S)})$ is distinguished it follows that $\xi_0^{\otimes q^n}$ is the zero map for some $n \ge 0$.

2.1.4. Remark. A distinguished quasi-ideal on W(S) for S = Spec(R) with \mathfrak{p} nilpotent in R is the same as a projective rank one W(R)-module I, together with a map $\xi : I \to W(R)$ such that, Zariski locally on R, ξ sends a generator of I to a distinguished element of W(R).

2.1.5. Principal distinguished quasi-ideals. If $\xi \in W(R) = Hom(\mathscr{O}_{W(S)}, \mathscr{O}_{W(S)})$ is a distinguished element then $(\xi : \mathscr{O}_{W(S)} \to \mathscr{O}_{W(S)})$ is a distinguished quasi-ideal and a distinguished quasi-ideal is said to be principal and generated by $\xi \in W(R)$ if it is isomorphic to one of this form.

2.1.6. **Proposition** (Properties of distinguished quasi-ideals over Witt vectors). Let S = Spec(R) where $\mathfrak{p}^r = 0$ in R.

- (i) Every morphism of distinguished quasi-ideals over W(S) is an isomorphism.
- (ii) If $(\xi : \mathscr{I} \to \mathscr{O}_{W(S)})$ is a distinguished quasi-ideal then so is $(\varphi^*(\xi) : \varphi^*(\mathscr{I} \to \mathscr{O}_{W(S)})$, and moreover it is principal.
- (iii) If $(\xi : \mathscr{I} \to \mathscr{O}_{W(S)})$ is a distinguished quasi-ideal and $\xi_0^{\otimes q^n} = 0$ for some $n \ge 0$ then there exists an isomorphism

$$(i_{\mathfrak{p}}:\mathfrak{p}\otimes\mathscr{O}_{\mathrm{W}(\mathrm{S})}\to\mathscr{O}_{\mathrm{W}(\mathrm{S})})\xrightarrow{\sim}\varphi^{n+1*}(\xi:\mathscr{I}\to\mathscr{O}_{\mathrm{W}(\mathrm{S})}).$$

(iv) If u is an automorphism of a distinguished quasi-ideal $(\xi : \mathscr{I} \to \mathscr{O}_{W(S)})$ with the property that $\xi_0^{\otimes q^n} = 0$ for some $n \ge 1$, then $\varphi^{n+r+1*}(u) = \mathrm{id}$.

Proof. (i) It suffices to work locally and so we may assume that \mathscr{I} is principal in which case it follows (ii) of (2.1.2).

(ii) The line bundle \mathscr{I} and the morphism $\xi : \mathscr{I} \to \mathscr{O}_{W(S)}$ correspond to a compatible collection of rank one projective $W_n(R)$ -modules I_n and compatible maps $\xi_n : I_n \to W_n(R)$ and the claim is that the compatible collection $\varphi^*(I_{n+1})$ of $W_n(R)$ -modules is free.

First, we define for each $n \ge 1$ a map

$$I_{n+1} \to W_n(R)/\xi_n(I_n) : i \mapsto \delta_\pi(\xi_{n+1}(i)) \mod \xi_n(I_n).$$

We claim that this map is additive and φ -linear. In proving this, for clarity we will denote the reduction maps $W_{n+1}(\mathbb{R}) \to W_n(\mathbb{R})$ and $I_{n+1} \to I_n$ by $x \mapsto \overline{x}$. By definition we have: $\overline{\xi_{n+1}(i)} = \xi_n(\overline{i})$.

Now, for additivity we have:

$$\begin{split} \delta_{\pi}(\xi_{n+1}(i+j)) &= \delta_{\pi}(\xi_{n+1}(i) + \xi_{n+1}(j)) \\ &= \delta_{\pi}(\xi_{n+1}(i)) + \delta_{\pi}(\xi_{n+1}(j)) + \sum_{k=1}^{q-1} \frac{1}{\pi} \binom{q}{k} \overline{\xi_{n+1}(i)^{q-k} \xi_{n+1}(j)^{k}} \\ &= \delta_{\pi}(\xi_{n+1}(i)) + \delta_{\pi}(\xi_{n+1}(j)) + \sum_{k=1}^{q-1} \frac{1}{\pi} \binom{q}{k} \xi_{n}(\bar{i})^{q-k} \xi_{n}(\bar{j})^{k} \\ &= \delta_{\pi}(\xi_{n+1}(i)) + \delta_{\pi}(\xi_{n+1}(j)) \mod \xi_{n}(\mathbf{I}_{n}) \end{split}$$

For the semi-linearity we have:

$$\delta_{\pi}(\xi_{n+1}(wi)) = \delta_{\pi}(w\xi_{n+1}(i))$$

= $\varphi(w)\delta_{\pi}(\xi_{n+1}(i)) + \delta_{\pi}(w)\overline{\xi_{n+1}(i)}^{q}$
= $\varphi(w)\delta_{\pi}(\xi_{n+1}(i)) + \delta_{\pi}(w)\xi_{n}(\bar{i})^{q}$
= $\varphi(w)\delta_{\pi}(\xi_{n+1}(i)) \mod \xi_{n}(I_{n})$

Therefore, we have defined a φ -linear map $I_{n+1} \to \mathfrak{p} \otimes W_n(\mathbb{R})/\xi_n(\mathbb{I}_n)$ which induces a linear map

$$\varphi^*(\mathbf{I}_{n+1}) \otimes_{\mathbf{W}_n(\mathbf{R})} \mathbf{W}_n(\mathbf{R}) / (\xi_n(\mathbf{I}_n)) \to \mathfrak{p} \otimes \mathbf{W}_n(\mathbf{R}) / \xi_n(\mathbf{I}_n).$$

This is a homomorphism of rank one projective $W_n(\mathbf{R})$ -modules and it is an isomorphism as it comes from a distinguished quasi-ideal: locally I_{n+1} admits a generator i with the property that $\delta_{\pi}(\xi_{n+1}(i))$ is invertible in $W_n(\mathbf{R})$.

Therefore, $\varphi^*(\mathbf{I}_{n+1})$ is free and as $W_{n+1}(\mathbf{R}) \to W_n(\mathbf{R})$ is surjective with nilpotent kernel, it follows that we can compatibly lift generators and hence $\varphi^*(\mathscr{I})$ is free.

(iii) By induction we are reduced to the case n = 0. As in (ii) let $\xi : \mathscr{I} \to \mathscr{O}_{W(S)}$ correspond to the compatible system $\xi_m : I_m \to W_m(R)$. As $\xi_0 = 0$ it follows that ξ_m factors through $V_{\pi}W_{m-1}(R) \subset W_m(R)$ and so we can write each ξ_m uniquely as $V_{\pi} \circ \beta_m$ where $\beta_m : I_m \to W_{m-1}(R)$ is a φ -linear map and by uniqueness we have $\overline{\beta_m} = \beta_{m-1}$.

We then see that $\varphi^*(\xi_m) : \varphi^*(\mathbf{I}_m) \to \mathbf{W}_{m-1}(\mathbf{R})$ is the linearisation of the φ -linear map $\pi\beta_m : \mathbf{I}_m \to \mathbf{W}_{m-1}(\mathbf{R})$. The linearisations of the β_m now define a compatible collection of maps

$$\varphi^*(\mathbf{I}_m) \stackrel{\pi \otimes \beta_m}{\to} \mathfrak{p} \otimes \mathbf{W}_{m-1}(\mathbf{R})$$

such that $\varphi^*(\xi_m) = i_{\mathfrak{p}} \circ (\pi \otimes \beta_m)$. Therefore, we have a morphism of distinguished quasi-ideals

$$(\varphi^*(\xi):\mathscr{I}\to\mathscr{O}_{\mathrm{W}(\mathrm{S})})\to(i_{\mathfrak{p}}:\mathfrak{p}\otimes\mathscr{O}_{\mathrm{W}(\mathrm{S})}\to\mathscr{O}_{\mathrm{W}(\mathrm{S})})$$

which by (i) is an isomorphism.

(iv) Arguing locally this follows from (iv) of (2.1.2).

2.2. Prisms and Σ .

2.2.1. Distinguished quasi-ideals over general sheaves. Let X be a p-adic δ -sheaf. A distinguished quasi-ideal over X is a morphism of line bundles $(\xi : \mathscr{I} \to \mathscr{O}_X)$ such that, for all rings R and all morphisms $\operatorname{Spec}(R) \to X$, the pull-back of $(\xi : \mathscr{I} \to \mathscr{O}_X)$ along the δ -map W(Spec(R)) $\to X$ induced by adjunction is a distinguished quasi-ideal in the sense of (2.1.3).

2.2.2. *Prisms.* A prism is a pair $(X, (\xi : \mathscr{I} \to X))$ where X is a p-adic δ -sheaf and $(\xi : \mathscr{I} \to X)$ is a distinguished quasi-ideal. A morphism of prisms

$$(f, u) : (\mathbf{X}, (\xi_{\mathbf{X}} : \mathscr{I}_{\mathbf{X}} \to \mathbf{X})) \to (\mathbf{Y}, (\xi_{\mathbf{Y}} : \mathscr{I} \to \mathbf{Y}))$$

consists a δ -morphism $f: X \to Y$ and a morphism of distinguished quasi-ideals

$$u: f^*(\mathscr{I}_Y) \to \mathscr{I}_X.$$

Note that u is necessarily an isomorphism.

LANCE GURNEY

2.2.3. Drinfeld's stack Σ . The R-points of the p-adic stack Σ are given by

 $\Sigma(\mathbf{R}) := \{ \text{groupoid of distinguished quasi-ideals } (\xi : \mathscr{I} \to \mathscr{O}_{W(\text{Spec}(\mathbf{R}))}) \}.$

We denote by $\varphi_{\Sigma} : \Sigma \to \Sigma$ the morphism which on R-points is induced by pull-back along the Frobenius W(Spec(R)) \to W(Spec(R)).

2.2.4. Σ in terms of distinguished elements. Write **W** for the affine group scheme whose R-points is the ring of Witt vectors $\mathbf{W}(\mathbf{R}) := \mathbf{W}(\mathbf{R})$. Note that **W** is isomorphic to the affine scheme Spec($O\{t\}$).

Abusing notation we will also write \mathbf{W} for $\mathbf{W} \times_{\operatorname{Spec}(\mathcal{O})} \operatorname{Spf}(\mathcal{O})$.

Now, let $\mathbf{W}_{dist} \subset \mathbf{W}$ denote the subsheaf whose R-points are those $\xi \in \mathbf{W}(\mathbf{R}) = \mathbf{W}(\mathbf{R})$ which are distinguished. Thus, we have

$$\mathbf{W}_{\text{dist}} = \operatornamewithlimits{colim}_{n,m} \operatorname{Spec}(\mathbb{O}[t, \delta^{\circ 1}(t)^{\pm 1}, \delta^{\circ 2}(t), \ldots] / (\mathfrak{p}^n, t^m)).$$

We write $\mathbf{W}^{\times} \subset \mathbf{W}$ for the subsheaf whose set of R-points is the group of units in $\mathbf{W}(R) = W(R)$ (Note, can be shown that $W^{\times} \to W$ is an inverse limit of open immersions).

Then, \mathbf{W}^{\times} acts on $\mathbf{W}_{\mathrm{dist}}$ via multiplication and the map

$$\mathbf{W}_{\text{dist}} \to \Sigma$$

sending a distinguished element to the associated principal distinguished quasi-ideal identifies Σ with the stack-theoretic quotient

$$\mathbf{W}_{\text{dist}}/\mathbf{W}^{\times} \xrightarrow{\sim} \Sigma.$$

References

 $[\mathrm{BS19}]\;$ Bhargav Bhatt and Peter Scholze. Prisms and prismatic cohomology. 2019.

[Dri] Vladimir Drinfeld. http://math.uchicago.edu/ drinfeld/Seminar-2019.

[Dri21] Vladimir Drinfeld. Prismatization. 2021.

12