NOTES ON PRISMS (DRAFT)

LANCE GURNEY

April 26, 2021

Contents

Introduction 2

1. Witt vectors and δ-structures 2
1.1. Witt vectors and δ-structures 2
1.2 . δ-structures on sheaves 5
1.3. Stacks and quasi-coherent modules 7
2. Prisms 8
2.1. Distinguished elements and quasi-ideals 8
2.2. Prisms and Σ 11
References 12

Introduction

These notes will contain an overview of various things prismatic relative to a general complete discrete valuation ring with finite residue field.

The theory here can be found in the case of \mathbf{Z}_{p} in Bhatt-Scholze [BS19], or Drinfeld [Dri21] and [Dri]. Of course, any errors are my own.

1. Witt vectors and δ-structures

For now and forever we fix a complete discrete valuation ring \mathcal{O} with maximal ideal \mathfrak{p}, finite residue field $k=\mathcal{O} / \mathfrak{p}$ of cardinality q, a power of a prime p. When convenient we also fix a generator $\pi \in \mathcal{O}$ of \mathfrak{p}. We write $\operatorname{Alg}_{\mathcal{O}}$ for the category of \mathcal{O}-algebras and $\operatorname{Alg}_{\mathcal{O}}^{\mathfrak{p}}$ for the category of \mathcal{O}-algebras in which \mathfrak{p} is nilpotent.

1.1. Witt vectors and δ-structures.

1.1.1. Definition. Let A be an \mathcal{O}-algebra. A δ-structure on A is a map $\delta_{\pi}: \mathrm{A} \rightarrow \mathrm{A}$ satisfying the following identities:
(1) $\delta_{\pi}(x+y)=\delta_{\pi}(x)+\delta_{\pi}(y)-\sum_{i=1}^{q-1} \frac{1}{\pi}\binom{q}{i} x^{q-i} y^{i} .{ }^{1}$
(2) $\delta_{\pi}(x y)=x^{p} \delta_{\pi}(y)+\delta_{\pi}(x) y^{q}+\pi \delta_{\pi}(x) \delta_{\pi}(y)$.
(3) $\delta_{\pi}(a)=\left(a-a^{q}\right) / \pi$ for $a \in \mathcal{O}$.

This does not depend on the uniformiser π chosen in the sense that if $\pi^{\prime}=\lambda \pi$ for $\lambda \in \mathcal{O}^{\times}$then a map δ_{π} satisfies the identities above if and only if the map $\delta_{\pi^{\prime}}:=$ $\lambda^{-1} \delta_{\pi}$ satisfies the analogous identities with π replaced everywhere by $\lambda \pi=\pi^{\prime}$. In any case, the purpose of this structure is realised when we define the map

$$
\varphi: \mathrm{A} \rightarrow \mathrm{~A}: x \mapsto \varphi(x):=x^{q}+\pi \delta_{\pi}(x)
$$

which the reader readily checks is an \mathcal{O}-algebra homomorphism $\varphi: \mathrm{A} \rightarrow \mathrm{A}$ lifting the q-power Frobenius modulo \mathfrak{p}. A morphism of δ-rings is any \mathcal{O}-algebra homomorphism commuting with the δ maps and $\operatorname{Alg}_{\delta_{0}}$ denotes the category of δ-rings.
1.1.2. The torsion free case. If A is \mathfrak{p}-torsion free then δ-structures on A are in bijective correspondence with \mathcal{O}-algebra homomorphisms $\varphi: \mathrm{A} \rightarrow \mathrm{A}$ lifting the q-power Frobenius via

$$
\varphi \mapsto \delta: x \mapsto \frac{\varphi(x)-x^{q}}{\pi}
$$

If A is not \mathfrak{p}-torsion free then it really is extra structure but, as explained by Bhatt-Scholze, δ-structures are really 'derived' Frobenius lifts.
1.1.3. Witt vectors and arithmetic jets. The forgetful functor $\operatorname{Alg}_{\delta_{\mathcal{O}}} \rightarrow \operatorname{Alg}_{\mathcal{O}}$ admits both a left and a right adjoint. The right adjoint is given by the \mathcal{O}-Witt vectors $\mathrm{W}_{\mathcal{O}}$ and the left adjoint by the \mathcal{O}-arithmetic Jet ring $\mathrm{J}_{\mathcal{O}}$.

Composed with the forgetful functor these adjoints give a comonad and monad respectively on the category of \mathcal{O}-algebras and a coaction of $W_{\mathcal{O}}$ (resp. action of $\mathrm{J}_{\mathcal{O}}$) on an \mathcal{O}-algebra is the same as a $\delta_{\mathcal{O}}$-structure. The coaction map of $\mathrm{W}_{\mathcal{O}}(\mathrm{R})$ on itself is denoted $w: \mathrm{W}_{\mathcal{O}}(\mathrm{R}) \rightarrow \mathrm{W}_{\mathcal{O}}\left(\mathrm{W}_{\mathcal{O}}(\mathrm{R})\right)$ and called the Artin-Hasse exponential.

[^0]1.1.4. Coordinates on the Witt vectors. The Witt vector functor $\mathrm{W}_{\mathcal{O}}$ is co-represented by $\mathrm{J}_{\mathcal{O}}(\mathcal{O}[t])=\mathcal{O}\{t\}$ which is, by definition, the free δ-ring on a single generator. As an \mathcal{O}-algebra, it is a polynomial algebra on countably many generators given by the elements $\delta_{i}:=\delta^{\circ i}(t) \in \mathcal{O}\{t\}$:
$$
\mathcal{O}\{t\} \xrightarrow{\sim} \mathcal{O}\left[\delta_{0}, \delta_{1}, \ldots\right]
$$

These generators induce the 'Joyal coordinates' on the Witt vectors:

$$
\mathrm{W}_{\mathcal{O}}(\mathrm{R})=\operatorname{Hom}_{\mathcal{O}}(\mathcal{O}\{t\}, \mathrm{R}) \xrightarrow{\sim} \prod_{i=0}^{\infty} \mathrm{R}: f \mapsto\left(f\left(\delta_{0}\right), f\left(\delta_{1}\right), \ldots\right)
$$

The \mathcal{O}-algebra structure on the infinite product $\prod_{i=0}^{\infty} \mathrm{R}$ induced by the isomorphism above is the unique functorial one such that:
(i) The projection:

$$
\prod_{i=0}^{\infty} \mathrm{R} \rightarrow \mathrm{R}:\left(\delta_{0}, \delta_{1}, \delta_{2} \ldots\right) \rightarrow \delta_{0}
$$

is an \mathcal{O}-algebra homomorphism.
(ii) The map

$$
\prod_{i=0}^{\infty} \mathrm{R} \rightarrow \prod_{i=0}^{\infty} \mathrm{R}:\left(\delta_{0}, \delta_{1}, \ldots\right) \mapsto\left(\delta_{0}^{q}+\pi \delta_{1}, \delta_{1}^{q}+\pi \delta_{2}, \ldots\right)
$$

is an \mathcal{O}-algebra homomorphism. This homomorphism corresponds to the Frobenius φ on the Witt vectors.
There is a second set of coordinates on $W_{\mathcal{O}}(R)$ called the 'Witt coordinates'. If we denote them by $d_{i} \in \mathcal{O}\{t\}$ for $i=0,1, \ldots$ then $d_{0}=\delta_{0}=t$ and the rest are defined inductively to be the unique elements of $\mathcal{O}\{t\}$ such that $\varphi^{\circ n}(t) \in \mathcal{O}\{t\}$ is given by the formula

$$
\varphi^{\circ n}(t)=\sum_{i=0}^{n} \pi^{i} d_{i}^{q^{n-i}}=d_{0}^{q^{n}}+\pi d_{1}^{q^{n-1}}+\pi^{2} d_{2}^{q^{n-2}}+\cdots+\pi^{n} d_{n}
$$

This induces a second isomorphism $W_{\mathcal{O}}(R) \xrightarrow{\sim} \prod_{i=0}^{\infty} R$ and the resulting \mathcal{O}-algebra structure on $\prod_{i=0}^{\infty} \mathrm{R}$ is the unique functorial one such that the maps

$$
g_{n}: \prod_{i=0}^{\infty} \mathrm{R} \rightarrow \mathrm{R}:\left(d_{0}, d_{1}, d_{2} \ldots\right) \rightarrow \sum_{i=0}^{n} \pi^{i} d_{i}^{q^{n-i}}
$$

are \mathcal{O}-algebra homomorphisms for $i \geq 0$. A coordinate free description of these maps

$$
g_{n}: \mathrm{W}_{\mathcal{O}}(\mathrm{R}) \rightarrow \mathrm{R}
$$

is iterates of the Frobenius φ^{n} composed with the canonical projection $W_{\mathcal{O}}(R) \rightarrow R$ and are called the ghost maps.
1.1.5. Teichmüller map. The \mathcal{O}-algebra $\mathcal{O}[t]$ has a unique δ-structure with Frobenius lift $\varphi(t)=t^{q}$. By adjunction we find a unique δ-map

$$
\mathcal{O}\{t\} \rightarrow \mathcal{O}[t]
$$

and the induced map

$$
[-]: \mathrm{R} \rightarrow \mathrm{~W}_{\mathcal{O}}(\mathrm{R})
$$

is the Teichmüller map. It is the unique multiplicative (but in general non-additive) section of the projection $W_{\mathcal{O}}(\mathrm{R}) \rightarrow \mathrm{R}$.
1.1.6. Verschiebung. The kernel of the projection $\mathrm{W}_{\mathcal{O}}(\mathrm{R}) \rightarrow \mathrm{R}$ is denoted by VW(R) and called the Verschiebung ideal. The restriction of the Frobenius to $\mathrm{VW}(\mathrm{R})$ has image contained in $\mathfrak{p W}(\mathrm{R})$ and it can be lifted to a unique functorial isomorphism

$$
\varphi: \mathrm{VW}(\mathrm{R}) \xrightarrow{\sim} \mathfrak{p} \otimes \mathrm{W}(\mathrm{R})
$$

The inverse of this isomorphism is called the Verschiebung map

$$
\mathrm{V}: \mathfrak{p} \otimes \mathrm{W}(\mathrm{R}) \xrightarrow{\sim} \mathrm{VW}(\mathrm{R}) \subset \mathrm{W}(\mathrm{R})
$$

We denote by V_{π} the map $\mathrm{V}_{\pi}(w)=\mathrm{V}(\pi \otimes w)$ which in terms of the Witt coordinates is given by

$$
\mathrm{V}_{\pi}\left(d_{0}, d_{1}, \ldots\right)=\left(0, d_{0}, d_{1}, \ldots\right)
$$

The Verschiebung (so normalised) satisfies the relations:
(i) $\varphi\left(\mathrm{V}_{\pi}(w)\right)=\pi w$,
(ii) $\mathrm{V}_{\pi}\left(\varphi(w) w^{\prime}\right)=w \mathrm{~V}_{\pi}\left(w^{\prime}\right)$,
(iii) $\mathrm{V}_{\pi}(w) \mathrm{V}_{\pi}\left(w^{\prime}\right)=\pi \mathrm{V}_{\pi}\left(w w^{\prime}\right)$.
1.1.7. Finite length Witt vectors. The image of the nth iterate V_{π}^{n} of the Verschiebung is denoted by $\mathrm{V}^{n} \mathrm{~W}(\mathrm{R})$ and called the nth Verschiebung ideal. The quotient $\mathrm{W}_{\mathcal{O}, n}(\mathrm{R}):=\mathrm{W}_{\mathcal{O}}(\mathrm{R}) / \mathrm{V}^{n} \mathrm{~W}_{\mathcal{O}}(\mathrm{R})$ is the ring of length n Witt vectors and we have

$$
\mathrm{W}_{\mathcal{O}, n}(\mathrm{R}) \xrightarrow{\sim} \lim _{n} \mathrm{~W}_{\mathcal{O}, n}(\mathrm{R})
$$

This equips $\mathrm{W}_{\mathcal{O}}(\mathrm{R})$ with a natural topology, or better, a natural pro-ring structure.
The maps $\delta, \varphi, \mathrm{V}_{\pi}$ and w are compatible with this structure and induce maps

$$
\delta, \varphi: \mathrm{W}_{\mathcal{O}, n+1}(\mathrm{R}) \rightarrow \mathrm{W}_{\mathcal{O}, n}(\mathrm{R}) \quad \mathrm{V}_{\pi}^{i}: \mathrm{W}_{\mathcal{O}, n}(\mathrm{R}) \rightarrow \mathrm{W}_{\mathcal{O}, n+i}(\mathrm{R})
$$

and

$$
w: \mathrm{W}_{\mathcal{O}, n+m}(\mathrm{R}) \rightarrow \mathrm{W}_{\mathcal{O}, n}\left(\mathrm{~W}_{\mathcal{O}, m}(\mathrm{R})\right)
$$

and then short exact sequences

$$
0 \rightarrow \mathrm{~W}_{\mathcal{O}, n}(\mathrm{R}) \xrightarrow{\mathrm{V}_{\pi}^{i}} \mathrm{~W}_{\mathcal{O}, n+i}(\mathrm{R}) \rightarrow \mathrm{W}_{\mathcal{O}, i}(\mathrm{R}) \rightarrow 0
$$

for all $0 \leq i \leq n \leq \infty$ (where $i, n=\infty$ means the infinite length Witt vectors).
1.1.8. Witt vectors as series. It follows that using the Teichmüller and the Verschiebung we can uniquely write any Witt vector $w \in \mathrm{~W}_{\mathcal{O}}(R)$ as an infinite series

$$
w=\sum_{i=0}^{\infty} \mathrm{V}_{\pi}^{i}\left[r_{i}\right]
$$

with $r_{0}, r_{1}, \ldots \in \mathrm{R}$. The induced coordinates agree with the Witt coordinates defined earlier.
1.1.9. Witt vectors, nilpotent ideals and étale maps. If $\mathrm{R} \rightarrow \mathrm{R}^{\prime}$ is an étale homomorphism then for all finite n and all homomorphisms $\mathrm{R} \rightarrow \mathrm{R}^{\prime \prime}$, the natural map

$$
\mathrm{W}_{\mathcal{O}, n}\left(\mathrm{R}^{\prime}\right) \otimes_{\mathrm{W}_{\mathcal{O}, n}(\mathrm{R})} \mathrm{W}_{\mathcal{O}, n}\left(\mathrm{R}^{\prime \prime}\right) \xrightarrow{\sim} \mathrm{W}_{\mathcal{O}, n}\left(\mathrm{R}^{\prime} \otimes_{\mathrm{R}} \mathrm{R}^{\prime \prime}\right)
$$

is an isomorphism.
For $1 \leq n \leq \infty$ and $\mathrm{I} \subset \mathrm{R}$ an ideal we write $\mathrm{W}_{\mathcal{O}, n}(\mathrm{I})=\operatorname{ker}\left(\mathrm{W}_{\mathcal{O}, n}(\mathrm{R}) \rightarrow\right.$ $\left.\mathrm{W}_{\mathcal{O}, n}(\mathrm{R})\right)$. Then:
(i) If I is nilpotent and $1 \leq n<\infty$ then $\mathrm{W}_{\mathcal{O}, n}(\mathrm{I})$ is also nilpotent.
(ii) If \mathfrak{p} is nilpotent in R then $\mathrm{V}_{\pi}^{i} \mathrm{~W}_{\mathcal{O}, n}(\mathrm{R}) \subset \mathrm{W}_{\mathcal{O}, n+i}(\mathrm{R})$ is nilpotent, as is $\mathfrak{p} W_{\mathcal{O}, n}(\mathrm{R})$.
(iii) We have $\varphi\left(\mathrm{W}_{\mathcal{O}, n}(\mathrm{I})\right) \subset \mathrm{W}_{\mathcal{O}, n-1}\left(\mathrm{I}^{q}+\pi \mathrm{I}\right)$ (use Joyal coordinates).
1.1.10. Witt vectors of k-algebras. If R is an $\mathcal{O} / \mathfrak{p}=k$-algebra then the Witt vector Frobenius φ coincides with $\mathrm{W}_{\mathcal{O}}\left(\mathrm{Fr}^{q}\right)$. This implies that the Verschiebung and Frobenius actually commute

$$
\varphi\left(\mathrm{V}_{\pi}(w)\right)=\mathrm{V}_{\pi}(\varphi(w))=\pi w
$$

In fact, this is equivalent to R being a k-algebra. In particular, if the Frobenius is an isomorphism on R , it is on $\mathrm{W}_{\mathcal{O}}(\mathrm{R})$ and $\mathrm{V}_{\pi}^{i}=\pi^{i} \varphi^{-i}$. In this case, every element of $W_{\mathcal{O}}(\mathrm{R})$ can be written uniquely as a 'power series in π ':

$$
w=\sum_{i=0}^{\infty}\left[r_{i}\right] \pi^{i}
$$

Note that this implies that $\mathrm{W}_{\mathcal{O}}(\mathrm{R})$ is π-torsion free.
1.1.11. The case $\mathcal{O}=\mathbf{F}_{q}[[\pi]]$. If $\mathcal{O}=\mathbf{F}_{q}[[\pi]]$ is equi-characteristic and R is an $\mathbf{F}_{q}[[\pi]]$-algebra then the Teichmüller map

$$
[-]: \mathrm{R} \rightarrow \mathrm{~W}_{\mathbf{F}_{q}[[\pi]]}(\mathrm{R})
$$

is an \mathbf{F}_{q}-linear ring homomorphism, that is it is not only multiplicative but also additive. It is not an $\mathbf{F}_{q}[[\pi]]$-algebra homomorphism, as $[\pi] \neq \pi$ in $\mathrm{W}_{\mathbf{F}_{q}[[\pi]]}(\mathrm{R})$. However, there is an induced $\mathbf{F}_{q}[[\pi]]$-linear map

$$
\mathrm{R} \otimes_{\mathbf{F}_{q}} \mathbf{F}_{q}[[\pi]] \rightarrow \mathrm{W}_{\mathbf{F}_{q}[[\pi]]}(\mathrm{R})
$$

If R is π-adically complete (the case we are mainly interested in) then this map extends by continuity to a map

$$
\mathrm{R}[[\pi]] \rightarrow \mathrm{W}_{\mathbf{F}_{q}[[\pi]]}(\mathrm{R})
$$

which is in general is neither surjective nor injective. However, if R is perfect (i.e. the q-power Frobenius is an isomorphism) then it is an isomorphism. Moreover, for any $\mathrm{R}, \mathrm{R}[[\pi]]$ has a unique δ-structure, given by $\delta(r)=0$ for $r \in \mathrm{R} \subset \mathrm{R}[[\pi]]$, for which the $\mathrm{R}[[z]] \rightarrow \mathrm{W}_{\mathbf{F}_{q}[[\pi]]}(\mathrm{R})$ is a δ-homomorphism.

1.2. δ-structures on sheaves.

1.2.1. Pro-rings and ind-affine sheaves. Let $\mathrm{Alg}_{\mathcal{O}}^{\mathrm{pro}}$ denote the category of pro- \mathcal{O} algebras. We denote a general object of this category by

$$
" \lim _{i \in \mathrm{I}} \mathrm{R}_{i} " .
$$

Then the Yoneda embedding $\mathrm{R} \mapsto \operatorname{Spec}(\mathrm{R})$ extends to the category of pro- \mathcal{O} algebras by

$$
" \lim _{i \in \mathrm{I}} \mathrm{R}_{i} " \mapsto \operatorname{colim}_{i \in \mathrm{I}} \operatorname{Spec}\left(\mathrm{R}_{i}\right)
$$

and this functor is fully faithful. The essential image of this functor is the category of ind-affine sheaves Aff $_{\mathcal{O}}^{\text {ind }}$.
1.2.2. Witt vectors of sheaves. Given a sheaf X, writing it as its 'Yoneda colimit'

$$
X \xrightarrow{\sim} \underset{\operatorname{Spec}(R) \rightarrow X}{\operatorname{colim}} \operatorname{Spec}(R)
$$

we define

$$
\mathrm{W}_{\mathcal{O}, n}(\mathrm{X}):=\underset{\operatorname{Spec}(\mathrm{R}) \rightarrow \mathrm{X}}{\operatorname{colim}} \operatorname{Spec}\left(\mathrm{~W}_{\mathcal{O}, n}(\mathrm{R})\right) \quad \text { and } \quad \mathrm{W}_{\mathcal{O}}(\mathrm{X})=\operatorname{colim}_{n} \mathrm{~W}_{\mathcal{O}, n}(\mathrm{X})
$$

If $X=\operatorname{Spec}(R)$ is affine then

$$
\mathrm{W}_{\mathcal{O}}(\operatorname{Spec}(\mathrm{R}))=\underset{n}{\operatorname{colim}} \operatorname{Spec}\left(\mathrm{~W}_{\mathcal{O}, n}(\mathrm{R})\right)
$$

is identified with the ind-affine scheme corresponding to the pro-ring " $\lim _{n} \mathrm{~W}_{\mathcal{O}, n}(\mathrm{R})$ ".
1.2.3. δ-structures on sheaves. The functor $\mathrm{W}_{\mathcal{O}}$ on $\mathrm{Sh}_{\mathcal{O}}$ defines a monad (the variance has changed) and a δ-structure on sheaf is an action of this monad. We write $\mathrm{Sh}_{\delta_{\mathcal{O}}}$ for the category of δ-sheaves (that is sheaves equipped with a δ-structure) and note that the forgetful functor to the category of sheaves commutes limits, disjoint unions and filtered colimits. Moreover, $\mathrm{X} \mapsto \mathrm{W}_{\mathcal{O}}(\mathrm{X})$ is (by definition) left adjoint to the forgetful functor.

Of course, any δ-sheaf X has a lift of q-power Frobenius $\varphi: \mathrm{X} \rightarrow \mathrm{X}$.
1.2.4. Arithmetic jet (pre)sheaves. The forgetful functor from δ-sheaves to all sheaves wants to have a right adjoint given by the Jet space:

$$
\mathrm{J}_{\mathcal{O}}(\mathrm{X}):=\lim _{n} \mathrm{X} \circ \mathrm{~W}_{\mathcal{O}, n}
$$

However $\mathrm{J}_{\mathcal{O}}(\mathrm{X})$ is not in general an fpqc sheaf as the functors $\mathrm{W}_{\mathcal{O}, n}$ are not continuous for the fpqc topology (although they are continuous for the étale topology). Whenever the presheaf $\mathrm{J}_{\mathcal{O}}(\mathrm{X})$ defined above is a sheaf, the adjunction property holds - in particular for X a scheme (as in this case each presheaf $\mathrm{J}_{\mathcal{O}, n}(\mathrm{X}):=\mathrm{X} \circ \mathrm{J}_{\mathcal{O}, n}$ is itself a scheme). In general, we will see later that after 'perfecting' the functor $\mathrm{J}_{\mathcal{O}}$ becomes continuous.
1.2.5. \mathfrak{p}-adic sheaves. The terminal object $\operatorname{Spec}(\mathcal{O})$ in $\mathrm{Sh}_{\mathcal{O}}$ has a natural subsheaf

$$
\operatorname{Spf}(\mathcal{O}):=\operatorname{colim}_{i} \operatorname{Spec}\left(\mathcal{O} / \mathfrak{p}^{i}\right) \subset \operatorname{Spec}(\mathcal{O})
$$

whose value on an \mathcal{O}-algebra R is the singleton if \mathfrak{p} is nilpotent in R and empty otherwise. A sheaf $X \in \operatorname{Sh}_{\mathcal{O}}$ is said to be \mathfrak{p}-adic if its structure map $X \rightarrow \operatorname{Spec}(\mathcal{O})$ factors through $\operatorname{Spf}(\mathcal{O}) \subset \operatorname{Spec}(\mathcal{O})$. We will write $\operatorname{Sh}_{\mathcal{O}}^{\mathfrak{p}}$ for this category.
1.2.6. \mathfrak{p}-adic δ-sheaves. We now arrive at our final destination which is the category of \mathfrak{p}-adic δ-sheaves. Note that $\mathrm{Sh}_{\mathcal{O}}^{\mathfrak{p}}$ is stable under the functor $\mathrm{W}_{\mathcal{O}}$ as if \mathfrak{p} is nilpotent in R it is also nilpotent in $\mathrm{W}_{n, \mathcal{O}}(\mathrm{R})$ so that $\operatorname{Spec}\left(\mathrm{W}_{\mathcal{O}, n}(\mathrm{R})\right)$ is a \mathfrak{p}-adic sheaf and therefore so is $W_{\mathcal{O}}(\operatorname{Spec}(R))$. We denote by $\operatorname{Sh}_{\delta_{\mathcal{O}}}$ the category of \mathfrak{p}-adic sheaves equipped with a δ-structure and compatible morphisms. It will be useful later to note that if \mathfrak{p} is nilpotent in R then the morphisms $W_{\mathcal{O}, n}(\operatorname{Spec}(R)) \rightarrow W_{\mathcal{O}}(\operatorname{Spec}(R))$ are representable by nilpotent immersions.

1.3. Stacks and quasi-coherent modules.

1.3.1. 'Algebraic' stacks. A morphism of schemes $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be fpqc if it is faithfully flat and a covering morphism for the fpqc topology.

A stack \mathscr{X} is said to be algebraic if there exists a morphism $\mathrm{X} \rightarrow \mathscr{X}$ from a scheme X which is representable by fpqc morphisms. A morphism $f: \mathscr{X} \rightarrow \mathscr{Y}$ of stacks is said to be algebraic if for all affine $\operatorname{schemes} \operatorname{Spec}(\mathrm{R}) \rightarrow \mathscr{Y}$ the stack $\mathscr{X} \times \mathscr{Y} \operatorname{Spec}(\mathrm{R})$ is algebraic. Algebraic morphisms are preserved under composition, base change and satisfy fpqc descent.
1.3.2. Quasi-coherent modules. If X is a sheaf ${ }^{2}$ (\mathfrak{p}-adic if you like, but for this it is not important) then a quasi-coherent module \mathscr{M} on X is defined to be the following data: for all maps $f: \operatorname{Spec}(\mathrm{R}) \rightarrow \mathrm{X}$, we are given an R-module

$$
\mathscr{M}_{f}
$$

and for all morphisms $h: \operatorname{Spec}\left(\mathrm{R}^{\prime}\right) \rightarrow \operatorname{Spec}(\mathrm{R})$ an isomorphism

$$
h^{*}\left(\mathscr{M}_{f}\right) \xrightarrow{\sim} \mathscr{M}_{f \circ h}
$$

satisfying the usual compatibility conditions, where the first h^{*} denotes the usual base change induced by $h: \mathrm{R} \rightarrow \mathrm{R}^{\prime}$. We denote by $\mathrm{QCoh}(\mathrm{X})$ the category of quasicoherent modules on X . We write \mathscr{O}_{X} for the quasi-coherent module $\left(\mathscr{O}_{\mathrm{X}}\right)_{f}=\mathrm{R}$. Of course, $\mathrm{X} \mapsto \mathrm{QCoh}(\mathrm{X})$ is just the right Kan extension of its restriction to affine schemes.

When $\mathrm{X}=\operatorname{Spec}(\mathrm{R})$, or more generally any scheme, $\mathrm{QCoh}(\mathrm{X})$ agrees with the usual notion. In general, if we can write $\mathrm{X}=\operatorname{colim}_{i} \mathrm{X}_{i}$ then

$$
\mathrm{QCoh}(\mathrm{X}) \xrightarrow{\sim} \lim _{i} \mathrm{QCoh}\left(\mathrm{X}_{i}\right)
$$

whence the observation that $\mathrm{QCoh}(\mathrm{X})$ may in general not be abelian. In particular, if $\mathrm{X}=\operatorname{Spf}(\mathcal{O})$ then $\mathrm{QCoh}(\mathrm{X})$ is equivalent to the category of \mathfrak{p}-adically complete \mathcal{O}-modules, which is not abelian. If we can write $\mathrm{X}=\operatorname{colim}_{i} \mathrm{X}_{i}$ in such a way that each $\mathrm{QCoh}\left(\mathrm{X}_{i}\right)$ is abelian and the transition maps induce exact functors on quasi-coherent modules e.g. for a scheme and an open cover by affines, but it works more generally.

If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is a morphism of sheaves and \mathscr{M} is a quasi-coherent module on Y then $f^{*}(\mathscr{M})$ is defined by setting, for any $h: \operatorname{Spec}(\mathrm{R}) \rightarrow \mathrm{X}$

$$
f^{*}(\mathscr{M})_{h}:=\mathscr{M}_{f \circ h}
$$

[^1]We say that \mathscr{M} is a vector bundle if $f^{*}(\mathscr{M})$ is a finite projective R -module for all $f: \operatorname{Spec}(\mathrm{R}) \rightarrow \mathrm{X}$ and that \mathscr{M} and a line bundle if it is finite projective of rank one.

An important case is when $\mathrm{X}=\operatorname{colim}_{i} \operatorname{Spec}\left(\mathrm{R}_{i}\right)$ is an ind-affine scheme. Then a line bundle \mathscr{L} on X is by definition a compatible collection L_{i} of rank one projective R_{i}-modules. If moreover the transition maps $\mathrm{R}_{i} \rightarrow \mathrm{R}_{j}$ have kernels generated by nilpotent elements, we see that as soon as one L_{i} is free all of them are and $\mathscr{L} \xrightarrow{\sim} \mathscr{O} \mathrm{X}$. In particular, any affine open cover of one $\operatorname{Spec}\left(\mathrm{R}_{i}\right)$ induces unique compatible open covers of all the $\operatorname{Spec}\left(\mathrm{R}_{j}\right)$. Thus in this case, there is a relative affine open cover of X with the property that the pull-back of \mathscr{L} to this open cover is free.

Given a quasi-coherent module \mathscr{M} on X we can turn it into a 'physical' object over X, that is an actual sheaf over X, as follows. We define $\mathbf{V}(\mathscr{M})$ to be the sheaf over X whose set of sections over a sheaf $f: \mathrm{Y} \rightarrow \mathrm{X}$ is

$$
\mathbf{V}(\mathscr{M})(\mathrm{Y}):=\operatorname{Hom}_{\mathrm{QCoh}(\mathrm{Y})}\left(\mathscr{O}_{\mathrm{Y}}, f^{*}(\mathscr{M})\right)
$$

In this way, we see that $\mathbf{V}\left(\mathscr{O}_{\mathrm{X}}\right) \xrightarrow{\sim} \mathbf{A}_{\mathrm{X}}^{1}$. That is

$$
\mathbf{V}\left(\mathscr{O}_{\mathrm{X}}\right)(\mathrm{Y})=\operatorname{Hom}_{\mathrm{QCoh}(\mathrm{Y})}\left(\mathscr{O}_{\mathrm{Y}}, f^{*}\left(\mathscr{O}_{\mathrm{X}}\right)\right)=\operatorname{Hom}_{\mathrm{X}}\left(\mathrm{Y}, \mathbf{A}_{\mathrm{X}}^{1}\right)
$$

More generally, a quasi-coherent module \mathscr{E} on X is a vector bundle if and only if $\mathbf{V}(\mathscr{E})$ is locally ${ }^{3}$ isomorphic to $\mathbf{V}\left(\mathscr{O}_{\mathrm{X}}^{n}\right)=\mathbf{A}_{\mathrm{X}}^{n}$.

2. Prisms

2.1. Distinguished elements and quasi-ideals.

2.1.1. Distinguished elements. Let R be an \mathcal{O} in which \mathfrak{p} is nilpotent, i.e. $\mathrm{R} \in$ $\mathrm{Alg}_{\mathcal{O}}^{\mathfrak{p}}$, and consider the Witt vectors $\mathrm{W}(\mathrm{R})$. We say than an element $\xi \in \mathrm{W}(\mathrm{R})$ is distinguished if one of the following equivalent conditions hold:
(i) $\xi=\left[\xi_{0}\right]+\mathrm{V}_{\pi}\left[\xi_{1}\right]+\cdots$ with $\xi_{0} \in \mathrm{R}$ nilpotent and $\xi_{1} \in \mathrm{R}$ invertible,
(ii) $\xi=\left[\xi_{0}\right]+\mathrm{V}_{\pi}(w)$ with $\xi_{0} \in \mathrm{R}$ nilpotent and $w \in \mathrm{~W}(\mathrm{R})$ a unit,
(iii) The image of ξ in $\mathrm{W}_{n}(\mathrm{R})$ is nilpotent for each $n \geq 1$ and $\delta(\xi) \in \mathrm{W}(\mathrm{R})$ is a unit.
The fundamental example of a distinguished element is $\pi \in \mathrm{W}(\mathrm{R})$.
2.1.2. Proposition (Properties of distinguished elements). Let R be an $\mathcal{O} / \mathfrak{p}^{r}$ algebra and let $\xi \in \mathrm{W}(\mathrm{R})$.
(i) ξ is distinguished if and only if $\varphi(\xi)$ is distinguished.
(ii) If ξ is distinguished and $u \in \mathrm{~W}(\mathrm{R})$ then $\xi^{\prime}:=u \xi$ is distinguished if and only if u is a unit.
(iii) If $\xi^{q^{n}}=0 \bmod \mathrm{VW}(\mathrm{R})$ for some $n \geq 0$, then $\varphi^{n+1}(\xi)=u \pi$ where u is a unit.
(iv) If ξ is distinguished, $\xi^{q^{n}}=0 \bmod \operatorname{VW}(\mathrm{R})$ for some $n \geq 0$ and $u \xi=\xi$ then $\varphi^{n+r+1}(u)=1$.
(v) If $f: \mathrm{R} \rightarrow \mathrm{R}^{\prime}$ is a homomorphism and $\xi \in \mathrm{W}(\mathrm{R})$ is distinguished then $\mathrm{W}(f)(\xi) \in \mathrm{W}\left(\mathrm{R}^{\prime}\right)$ is distinguished.

[^2]Proof. (i) As $\varphi(\xi)=\xi^{q}+\pi \delta(\xi)$ and π is topologically nilpotent, we see that ξ is topologically nilpotent if and only if $\varphi(\xi)$ is topologically nilpotent. Similarly,

$$
\delta(\varphi(\xi))=\varphi(\delta(\xi))=\delta(\xi)^{q}+\pi(\delta(\delta(\xi)))
$$

so that $\delta(\varphi(\xi))$ is a unit if and only if $\delta(\xi)$ is a unit.
(ii) If ξ is distinguished and $u \in \mathrm{~W}(\mathrm{R})$ is a unit then $\xi^{\prime}=u \xi$ is topologically nilpotent and

$$
\delta(u \xi)=u^{q} \delta(\xi)+\varphi(\xi) \delta(u)
$$

is a unit as $u^{q} \delta(\xi)$ is a unit and $\varphi(\xi)$ is topologically nilpotent.
Conversely, if $u \in \mathrm{~W}(\mathrm{R})$ is any element such that $\xi^{\prime}=u \xi$ is distinguished then the same equality

$$
\delta(u \xi)=u^{q} \delta(\xi)+\varphi(\xi) \delta(u)
$$

shows that u^{q} and hence u must be a unit.
(iii) We have $\xi=\left[\xi_{0}\right]+\mathrm{V}_{\pi}(w)$ where w is a unit and $\xi^{q^{n}}=0 \bmod \operatorname{VW}(\mathrm{R})$ is equivalent to $\xi_{0}^{q^{n}}=0$ in R. Therefore,

$$
\varphi^{n+1}(\xi)=\varphi^{n+1}\left(\left[\xi_{0}\right]\right)+\varphi^{n+1}\left(\mathrm{~V}_{\pi}(w)\right)=\left[\xi_{0}^{q^{n}+1}\right]+\pi \varphi^{n}(w)=\pi \varphi^{n}(w)
$$

(iv) By (iii) we are reduced to showing that if $u \pi=\pi$ then $\varphi^{r}(u)=1$. If $r=1$, so that $\pi=0$ in R , then $\varphi \circ \mathrm{V}_{\pi}=\mathrm{V}_{\pi} \circ \varphi=\pi$ so that

$$
0=p(u-1)=\varphi\left(\mathrm{V}_{\pi}(u-1)\right)=\mathrm{V}_{\pi}(\varphi(u-1))
$$

As V_{π} is injective this implies that $\varphi(u)=1$.
In general, this shows that $\varphi(u-1) \in \mathrm{W}(\mathfrak{p R})=\operatorname{ker}(\mathrm{W}(\mathrm{R}) \rightarrow \mathrm{W}(\mathrm{R} / \mathfrak{p}))$. However, we have $\varphi\left(W\left(\mathfrak{p}^{i} R\right)\right) \subset W\left(\mathfrak{p}^{i+1} R\right)$ so that if $\mathfrak{p}^{r}=0$ we get:

$$
\varphi^{r}(u-1)=\varphi^{r-1}(\varphi(u-1)) \in \varphi^{r-1}(\mathrm{~W}(\mathfrak{p R})) \subset \mathrm{W}\left(\mathfrak{p}^{r} \mathrm{R}\right)=0
$$

(v) Clear.
2.1.3. Distinguished quasi-ideals over Witt vectors. Write $S=\operatorname{Spec}(\mathrm{R})$. A distinguished quasi-ideal on $\mathrm{W}(\mathrm{S})$ is a line bundle \mathscr{I} on $\mathrm{W}(\mathrm{S})$ equipped with a map

$$
\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}
$$

such that on one (or any) open cover ${ }^{4}$ over which $\mathscr{I} \xrightarrow{\sim} \mathscr{O}_{\mathrm{W}(\mathrm{S})}$ is trivialised,

$$
\xi \in \operatorname{Hom}\left(\mathscr{O}_{\mathrm{W}(\mathrm{~S})}, \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right)=\mathrm{W}(\mathrm{R})
$$

is distinguished. A morphism of distinguished quasi-ideals

$$
u:\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right) \rightarrow\left(\xi^{\prime}: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right)
$$

is any morphism $u: \mathscr{I} \rightarrow \mathscr{I}^{\prime}$ such that $\xi^{\prime} \circ u=\xi$.
If $\mathrm{S}^{\prime}=\operatorname{Spec}\left(\mathrm{R}^{\prime}\right)$ and $f: \mathrm{S}^{\prime} \rightarrow \mathrm{S}$ is a morphism then we write

$$
f^{*}\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right)=\left(f^{*}(\xi): f^{*}(\mathscr{I}) \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right)
$$

which is again a distinguished quasi-ideal by (v) of (2.1.2).
Given a distinguished quasi-ideal $\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}\right)$ and writing $i: \mathrm{S} \rightarrow \mathrm{W}(\mathrm{S})$ for the natural closed immersion let us set $i^{*}(\mathscr{I})=\mathscr{I}_{0}$ and $\xi_{0}=i^{*}(\xi)$. Then we

[^3]have a morphism of line bundles $\left(\xi_{0}: \mathscr{I}_{0} \rightarrow \mathscr{O}_{\mathrm{S}}\right)$ over S . As $\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}\right)$ is distinguished it follows that $\xi_{0}^{\otimes q^{n}}$ is the zero map for some $n \geq 0$.
2.1.4. Remark. A distinguished quasi-ideal on $W(S)$ for $S=\operatorname{Spec}(\mathrm{R})$ with \mathfrak{p} nilpotent in R is the same as a projective rank one $W(R)$-module I, together with a $\operatorname{map} \xi: \mathrm{I} \rightarrow \mathrm{W}(\mathrm{R})$ such that, Zariski locally on R, ξ sends a generator of I to a distinguished element of $W(R)$.
2.1.5. Principal distinguished quasi-ideals. If $\xi \in \mathrm{W}(\mathrm{R})=\operatorname{Hom}\left(\mathscr{O}_{\mathrm{W}(\mathrm{S})}, \mathscr{O}_{\mathrm{W}(\mathrm{S})}\right)$ is a distinguished element then $\left(\xi: \mathscr{O}_{\mathrm{W}(\mathrm{S})} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}\right)$ is a distinguished quasi-ideal and a distinguished quasi-ideal is said to be principal and generated by $\xi \in \mathrm{W}(\mathrm{R})$ if it is isomorphic to one of this form.
2.1.6. Proposition (Properties of distinguished quasi-ideals over Witt vectors). Let $\mathrm{S}=\operatorname{Spec}(\mathrm{R})$ where $\mathfrak{p}^{r}=0$ in R .
(i) Every morphism of distinguished quasi-ideals over $\mathrm{W}(\mathrm{S})$ is an isomorphism.
(ii) If $\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}\right)$ is a distinguished quasi-ideal then so is $\left(\varphi^{*}(\xi)\right.$: $\varphi^{*}\left(\mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}\right)$, and moreover it is principal.
(iii) If $\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}\right)$ is a distinguished quasi-ideal and $\xi_{0}^{\otimes q^{n}}=0$ for some $n \geq 0$ then there exists an isomorphism
$$
\left(i_{\mathfrak{p}}: \mathfrak{p} \otimes \mathscr{O}_{\mathrm{W}(\mathrm{~S})} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right) \xrightarrow{\sim} \varphi^{n+1 *}\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right) .
$$
(iv) If u is an automorphism of a distingiushed quasi-ideal $\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}\right)$ with the property that $\xi_{0}^{\otimes q^{n}}=0$ for some $n \geq 1$, then $\varphi^{n+r+1 *}(u)=\mathrm{id}$.

Proof. (i) It suffices to work locally and so we may assume that \mathscr{I} is principal in which case it follows (ii) of (2.1.2).
(ii) The line bundle \mathscr{I} and the morphism $\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}$ correspond to a compatible collection of rank one projective $\mathrm{W}_{n}(\mathrm{R})$-modules I_{n} and compatible maps $\xi_{n}: \mathrm{I}_{n} \rightarrow \mathrm{~W}_{n}(\mathrm{R})$ and the claim is that the compatible collection $\varphi^{*}\left(\mathrm{I}_{n+1}\right)$ of $\mathrm{W}_{n}(\mathrm{R})$-modules is free.

First, we define for each $n \geq 1$ a map

$$
\mathrm{I}_{n+1} \rightarrow \mathrm{~W}_{n}(\mathrm{R}) / \xi_{n}\left(\mathrm{I}_{n}\right): i \mapsto \delta_{\pi}\left(\xi_{n+1}(i)\right) \bmod \xi_{n}\left(\mathrm{I}_{n}\right) .
$$

We claim that this map is additive and φ-linear. In proving this, for clarity we will denote the reduction maps $\mathrm{W}_{n+1}(\mathrm{R}) \rightarrow \mathrm{W}_{n}(\mathrm{R})$ and $\mathrm{I}_{n+1} \rightarrow \mathrm{I}_{n}$ by $x \mapsto \bar{x}$. By definition we have: $\overline{\xi_{n+1}(i)}=\xi_{n}(\bar{i})$.

Now, for additivity we have:

$$
\begin{aligned}
\delta_{\pi}\left(\xi_{n+1}(i+j)\right) & =\delta_{\pi}\left(\xi_{n+1}(i)+\xi_{n+1}(j)\right) \\
& =\delta_{\pi}\left(\xi_{n+1}(i)\right)+\delta_{\pi}\left(\xi_{n+1}(j)\right)+\sum_{k=1}^{q-1} \frac{1}{\pi}\binom{q}{k} \overline{\xi_{n+1}(i)^{q-k} \xi_{n+1}(j)^{k}} \\
& =\delta_{\pi}\left(\xi_{n+1}(i)\right)+\delta_{\pi}\left(\xi_{n+1}(j)\right)+\sum_{k=1}^{q-1} \frac{1}{\pi}\binom{q}{k} \xi_{n}(\bar{i})^{q-k} \xi_{n}(\bar{j})^{k} \\
& =\delta_{\pi}\left(\xi_{n+1}(i)\right)+\delta_{\pi}\left(\xi_{n+1}(j)\right) \bmod \xi_{n}\left(\mathrm{I}_{n}\right)
\end{aligned}
$$

For the semi-linearity we have:

$$
\begin{aligned}
\delta_{\pi}\left(\xi_{n+1}(w i)\right) & =\delta_{\pi}\left(w \xi_{n+1}(i)\right) \\
& =\varphi(w) \delta_{\pi}\left(\xi_{n+1}(i)\right)+\delta_{\pi}(w) \overline{\xi_{n+1}(i)} \\
& q \\
& =\varphi(w) \delta_{\pi}\left(\xi_{n+1}(i)\right)+\delta_{\pi}(w) \xi_{n}(\bar{i})^{q} \\
& =\varphi(w) \delta_{\pi}\left(\xi_{n+1}(i)\right) \bmod \xi_{n}\left(\mathrm{I}_{n}\right)
\end{aligned}
$$

Therefore, we have defined a φ-linear map $\mathrm{I}_{n+1} \rightarrow \mathfrak{p} \otimes \mathrm{~W}_{n}(\mathrm{R}) / \xi_{n}\left(\mathrm{I}_{n}\right)$ which induces a linear map

$$
\varphi^{*}\left(\mathrm{I}_{n+1}\right) \otimes_{\mathrm{W}_{n}(\mathrm{R})} \mathrm{W}_{n}(\mathrm{R}) /\left(\xi_{n}\left(\mathrm{I}_{n}\right)\right) \rightarrow \mathfrak{p} \otimes \mathrm{W}_{n}(\mathrm{R}) / \xi_{n}\left(\mathrm{I}_{n}\right)
$$

This is a homomorphism of rank one projective $W_{n}(R)$-modules and it is an isomorphism as it comes from a distinguished quasi-ideal: locally I_{n+1} admits a generator i with the property that $\delta_{\pi}\left(\xi_{n+1}(i)\right)$ is invertible in $\mathrm{W}_{n}(\mathrm{R})$.

Therefore, $\varphi^{*}\left(\mathrm{I}_{n+1}\right)$ is free and as $\mathrm{W}_{n+1}(\mathrm{R}) \rightarrow \mathrm{W}_{n}(\mathrm{R})$ is surjective with nilpotent kernel, it follows that we can compatibly lift generators and hence $\varphi^{*}(\mathscr{I})$ is free.
(iii) By induction we are reduced to the case $n=0$. As in (ii) let $\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{S})}$ correspond to the compatible system $\xi_{m}: \mathrm{I}_{m} \rightarrow \mathrm{~W}_{m}(\mathrm{R})$. As $\xi_{0}=0$ it follows that ξ_{m} factors through $\mathrm{V}_{\pi} \mathrm{W}_{m-1}(\mathrm{R}) \subset \mathrm{W}_{m}(\mathrm{R})$ and so we can write each ξ_{m} uniquely as $\mathrm{V}_{\pi} \circ \beta_{m}$ where $\beta_{m}: \mathrm{I}_{m} \rightarrow \mathrm{~W}_{m-1}(\mathrm{R})$ is a φ-linear map and by uniqueness we have $\overline{\beta_{m}}=\beta_{m-1}$.

We then see that $\varphi^{*}\left(\xi_{m}\right): \varphi^{*}\left(\mathrm{I}_{m}\right) \rightarrow \mathrm{W}_{m-1}(\mathrm{R})$ is the linearisation of the φ-linear map $\pi \beta_{m}: \mathrm{I}_{m} \rightarrow \mathrm{~W}_{m-1}(\mathrm{R})$. The linearisations of the β_{m} now define a compatible collection of maps

$$
\varphi^{*}\left(\mathrm{I}_{m}\right) \xrightarrow{\pi \otimes \beta_{m}} \mathfrak{p} \otimes \mathrm{~W}_{m-1}(\mathrm{R})
$$

such that $\varphi^{*}\left(\xi_{m}\right)=i_{\mathfrak{p}} \circ\left(\pi \otimes \beta_{m}\right)$. Therefore, we have a morphism of distinguished quasi-ideals

$$
\left(\varphi^{*}(\xi): \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right) \rightarrow\left(i_{\mathfrak{p}}: \mathfrak{p} \otimes \mathscr{O}_{\mathrm{W}(\mathrm{~S})} \rightarrow \mathscr{O}_{\mathrm{W}(\mathrm{~S})}\right)
$$

which by (i) is an isomorphism.
(iv) Arguing locally this follows from (iv) of (2.1.2).

2.2. Prisms and Σ.

2.2.1. Distinguished quasi-ideals over general sheaves. Let X be a \mathfrak{p}-adic δ-sheaf. A distingiushed quasi-ideal over X is a morphism of line bundles $\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{X}}\right)$ such that, for all rings R and all morphisms $\operatorname{Spec}(\mathrm{R}) \rightarrow \mathrm{X}$, the pull-back of $\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{X}}\right)$ along the δ-map $\mathrm{W}(\operatorname{Spec}(\mathrm{R})) \rightarrow \mathrm{X}$ induced by adjunction is a distinguished quasiideal in the sense of (2.1.3).
2.2.2. Prisms. A prism is a pair $(\mathrm{X},(\xi: \mathscr{I} \rightarrow \mathrm{X}))$ where X is a \mathfrak{p}-adic δ-sheaf and $(\xi: \mathscr{I} \rightarrow \mathrm{X})$ is a distinguished quasi-ideal. A morphism of prisms

$$
(f, u):\left(\mathrm{X},\left(\xi_{\mathrm{X}}: \mathscr{I}_{\mathrm{X}} \rightarrow \mathrm{X}\right)\right) \rightarrow\left(\mathrm{Y},\left(\xi_{\mathrm{Y}}: \mathscr{I} \rightarrow \mathrm{Y}\right)\right)
$$

consists a δ-morphism $f: \mathrm{X} \rightarrow \mathrm{Y}$ and a morphism of distinguished quasi-ideals

$$
u: f^{*}\left(\mathscr{I}_{\mathrm{Y}}\right) \rightarrow \mathscr{I}_{\mathrm{X}}
$$

Note that u is necessarily an isomorphism.
2.2.3. Drinfeld's stack Σ. The R-points of the \mathfrak{p}-adic stack Σ are given by

$$
\Sigma(\mathrm{R}):=\left\{\text { groupoid of distinguished quasi-ideals }\left(\xi: \mathscr{I} \rightarrow \mathscr{O}_{\mathrm{W}(\operatorname{Spec}(\mathrm{R}))}\right)\right\}
$$

We denote by $\varphi_{\Sigma}: \Sigma \rightarrow \Sigma$ the morphism which on R-points is induced by pull-back along the Frobenius $\mathrm{W}(\operatorname{Spec}(\mathrm{R})) \rightarrow \mathrm{W}(\operatorname{Spec}(\mathrm{R}))$.
2.2.4. Σ in terms of distinguished elements. Write \mathbf{W} for the affine group scheme whose R-points is the ring of Witt vectors $\mathbf{W}(R):=W(R)$. Note that \mathbf{W} is isomorphic to the affine scheme $\operatorname{Spec}(\mathcal{O}\{t\})$.

Abusing notation we will also write \mathbf{W} for $\mathbf{W} \times_{\operatorname{Spec}(\mathcal{O})} \operatorname{Spf}(\mathcal{O})$.
Now, let $\mathbf{W}_{\text {dist }} \subset \mathbf{W}$ denote the subsheaf whose R-points are those $\xi \in \mathbf{W}(\mathrm{R})=$ $\mathrm{W}(\mathrm{R})$ which are distinguished. Thus, we have

$$
\mathbf{W}_{\text {dist }}=\underset{n, m}{\operatorname{colim}} \operatorname{Spec}\left(\mathcal{O}\left[t, \delta^{\circ 1}(t)^{ \pm 1}, \delta^{\circ 2}(t), \ldots\right] /\left(\mathfrak{p}^{n}, t^{m}\right)\right)
$$

We write $\mathbf{W}^{\times} \subset \mathbf{W}$ for the subsheaf whose set of R-points is the group of units in $\mathbf{W}(\mathrm{R})=\mathbf{W}(\mathrm{R})$ (Note, can be shown that $\mathrm{W}^{\times} \rightarrow \mathrm{W}$ is an inverse limit of open immersions).

Then, \mathbf{W}^{\times}acts on $\mathbf{W}_{\text {dist }}$ via multiplication and the map

$$
\mathbf{W}_{\text {dist }} \rightarrow \Sigma
$$

sending a distinguished element to the associated principal distinguished quasi-ideal identifies Σ with the stack-theoretic quotient

$$
\mathbf{W}_{\mathrm{dist}} / \mathbf{W}^{\times} \xrightarrow{\sim} \Sigma
$$

References

[BS19] Bhargav Bhatt and Peter Scholze. Prisms and prismatic cohomology. 2019.
[Dri] Vladimir Drinfeld. http://math.uchicago.edu/ drinfeld/Seminar-2019.
[Dri21] Vladimir Drinfeld. Prismatization. 2021.

[^0]: ${ }^{1}$ Here $\frac{1}{\pi}\binom{q}{i}$ for $1 \leq i \leq q-1$ denotes the unique element in \mathcal{O} which multiplied by π gives $\binom{q}{i}$.

[^1]: ${ }^{2}$ It could also be a presheaf - the definition never uses that X is a sheaf. The same definition also works for stacks or prestacks, with the usual modifications: if \mathscr{X} is a (pre)stack then we ask for functor functors $\mathscr{X}(\mathrm{R}) \rightarrow \operatorname{Mod}(\mathrm{R})$ satisfying various compatibilities (rather than just maps $\mathrm{X}(\mathrm{R}) \rightarrow \operatorname{Mod}(\mathrm{R})$ for presheaves X$)$.

[^2]: ${ }^{3}$ Here locally is meant in the most general sense: after base change along an epimorphism $X^{\prime} \rightarrow X$ of fpqc sheaves.

[^3]: ${ }^{4}$ Such open covers exist because the transition maps $\operatorname{Spec}\left(\mathrm{W}_{n}(\mathrm{R})\right) \rightarrow \operatorname{Spec}\left(\mathrm{W}_{n+1}(\mathrm{R})\right)$ are nilpotent immersions. Any open subscheme of any $\operatorname{Spec}(\mathrm{R})$ lifts uniquely to a compatible family of open subschemes of the $\operatorname{Spec}\left(\mathrm{W}_{n}(\mathrm{R})\right)$ and hence to a (representable) open subscheme of the colimit $W(\operatorname{Spec}(R))$. Indeed, if $U \subset \operatorname{Spec}(R)$ is an open immersion then $W(U) \rightarrow W(\operatorname{Spec}(R))$ is also an open immersion. Similarly, a line bundle on $W(\operatorname{Spec}(R))$ is trivial if and only if its restriction to $\operatorname{Spec}(R)$ is trivial as trivialisations can always be lifted along nilpotent immersions.

